Page 110 - 《精细化工》2022年第1期
P. 110
·100· 精细化工 FINE CHEMICALS 第 39 卷
的协同作用使过滤和氧化甲醛同时进行。随着可见 [J]. Catalysis Science & Technology, 2015, 5(4): 2305-2313.
[8] GUO Y L, WEN M C, LI G Y, et al. Recent advances in VOC
光照射时间的延长、反应温度的升高,复合纤维膜
elimination by catalytic oxidation technology onto various
去除甲醛的效率加快。TM/TPU-8%复合纤维膜的过 nanoparticles catalysts: A critical review[J]. Applied Catalysis B:
Environmental, 2021, 281: 119447.
滤效果最好,对 PM 2.5 、PM 10 的过滤效率均达 99.9%
[9] CHEN R W, ZHANG H, WANG M Y, et al. Thermoplastic
以上;去除甲醛的效率较高,在 40 ℃时甲醛的转化 polyurethane nanofiber membrane based air filters for efficient
率达 90%左右,且循环稳定性优异,经过 50 h 的循 removal of ultrafine particulate matter PM 0.1[J]. ACS Applied Nano
Materials, 2020, 4(1): 182-189.
环使用后,甲醛转化率仍能达到 83%以上。本文通 [10] State Administration for Market Regulation, Standardization
过在复合纤维膜中掺杂少量的金属氧化物达到持续 Administration. Textiles-test methods for filtration of particulate
matter: GB/T 38413—2019[S]. Beijing: China Standard Press (中国
分解甲醛的目的,且不会产生有害的副产物或二次 标准出版社), 2019: 6-7.
污染,解决了活性炭吸附法存在的问题,为纤维膜 [11] Ministry of Environmental Protection of the People's Republic of
China. Air quality—determination of formaldehyde—acetylacetone
在低温可见光条件下过滤空气的同时高效氧化甲 spectrophotometric method: GB/T 15516—1995[S]. Beijing: China
醛提供了新方向。 Standard Press (中国标准出版社), 1995: 127-131.
[12] SHENG F X(盛凤翔). Study on oxidation of organic pollutants
catalyzed by activated carbon fiber supported cobalt phthalocyanine
参考文献:
[D]. Hangzhou: Zhejiang Sci-Tech University (浙江理工大学),
[1] HUANG Y, LIU Y, WANG W, et al. Oxygen vacancy-engineered 2011.
δ-MnO 2/activated carbon for room-temperature catalytic oxidation of [13] YUAN W J (袁文俊), ZHOU Y M (周勇敏). Reasons for aggregation
formaldehyde[J]. Applied Catalysis B: Environmental, 2020, 278: of nanoparticles and solutions[J]. Materials Reports (材料导报),
119294. 2008, 22(S3): 59-61.
[2] SONG X (宋祥). The research about ventilation and indoorpollution [14] LI M (李曼), FENG Q (凤权), WU D S (武丁胜), et al. Preparation
in residential buildings in severe cold climate regions of China[D]. and property of PAN-PVP nanofiber/viscose spunlace nonwoven
Tianjin: Tianjin University (天津大学), 2018. composite[J]. New Chemical Materials (化工新型材料), 2020,
[3] YAN S R (闫生荣), TAN W W (谭维维), YANG C H (杨春和), 48(8): 137-140,145.
et al. Research progress on purification of formaldehyde pollution by [15] CHEN H X, ZHANG R D, WANG H, et al. Encapsulating uniform
indoor ornamental plants[J]. Biology Teaching (生物学教学), 2012, Pd nanoparticles in TS-1 zeolite as efficient catalyst for catalytic
37(5): 48-50. abatement of indoor formaldehyde at room temperature[J]. Applied
[4] LE Y, GUO D P, CHENG B, et al. Bio-template-assisted synthesis of Catalysis B: Environmental, 2020, 278: 119311.
hierarchically hollow SiO 2 microtubes and their enhanced formaldehyde [16] Ministry of Environmental Protection of the People's Republic of
adsorption performance[J]. Applied Surface Science, 2013, 274: China, General Administration of Quality Supervision, Inspection
110-116. and Quarantine of the People's Republic of China. Ambient air
[5] WANG H X (王红侠), TANG L (汤亮). Preparation of anatase TiO 2 quality standards: GB/T 3095—2012[S]. Beijing: China Environmental
nano-particle by sol-gel method and its photocatlytic properties[J]. Science Press (中国环境科学出版社), 2012: 3-5.
Hot Working Technology (热加工工艺), 2013, 42(4): 28-30. [17] The State Bureau of Quality and Technical Supervision. Hygienic
[6] LIN H Q (林慧琪). Study on formaldehyde catalytic performance of standard for formaldehyde in indoor air of house: GB/T16127—
nano manganese dioxide composites[D]. Heifei: Heifei University of 1995[S]. Beijing: China Standard Press (中国标准出版社), 1995: 1.
Technology (合肥工业大学), 2018. [18] NING W W (宁伟伟). The preparation of TiO 2 nanofiber and
[7] ZHANG J H, LI Y B, WANG L, et al. Catalytic oxidation of photocatalysis functions for the degradation of formaldehyde[D].
formaldehyde over manganese oxides with different crystal structures Shanghai: Donghua University (东华大学), 2017.
(上接第 94 页) study[J]. Applied Thermal Engineering, 2008, 29(2): 445-454.
[10] YU Z J (俞臻杰), ZHANG G H (张冠华), CUI G M (崔国民) , et al. [16] RAJABIFAR B, SEYF H R, ZHANG Y, et al. Flow and heat transfer
Fabrication of novel nano phase change emulsion with low supercooling in micro pin fin heat sinks with nano-encapsulated phase change
and enhanced thermal conductivity[J]. Journal of Engineering for materials[J]. Journal of Heat Transfer, 2016, 138(6): 1-8.
Thermal Energy and Power (热能动力工程), 2010, 35(10): 146-166. [17] ZHAO W L (赵文亮), YAN A J (闫爱军), FU J H(付纪华). Study on
[11] WANG F X, FANG X N, ZHANG Z G. Preparation of phase change water quality control index of internal cooling water in HVDC
material emulsions with good stability and little supercooling by converter valve[J]. Shaanxi Electric Power (陕西电力), 2014, 42(8):
using a mixed polymeric emulsifier for thermal energy storage[J]. 76-81.
Solar Energy Materials and Solar Cells, 2018, 176(6): 381-390. [18] LI G X (李国兴), JIANG Z Q (姜子秋). Requirement and control of
[12] CHEN J, ZHANG P. Preparation and characterization of nano-sized internal cooling water quality of convertor valve[J]. Heilongjiang
phase change emulsions as thermal energy storage and transport Electric Power (黑龙江电力), 2013, 35(6): 542-545.
media[J]. Apply Energy, 2017, 190(7): 868-879. [19] ZHOU H (周辉). Insulation characteristics of combined gases[J].
[13] HUANG M J, EAMES P C, MCCORMACK S, et al. High Voltage Apparatus (高压电器), 2003, 39(5): 13-19.
Microencapsulated phase change slurries for thermal energy storage [20] WANG Y (王悦). Insulation characteristics of SF 6N 2 gas mixture in
in a residential solar energy system[J]. Renewable Energy, 2011, low temperature environment[D]. Harbin: Harbin Institute of
36(11): 2932-2939. Technology (哈尔滨工业大学), 2016.
[14] WANG L (王亮), WANG T (王涛), LIN G P (林贵平). Analysis of [21] ZHU J Y (朱皆悦). Comparative analysis on water cooling system of
heat dissipation performance of liquid cooling suit using latent heat HVDC transmission valve[D]. Beijing: North China Electric Power
functional thermal fluid[J]. Aerospace Medicine and Medical University (华北电力大学), 2014.
Engineering (航天医学与医学工程), 2011, 24(3): 186-190. [22] YANG S M (杨世铭), TAO W Q (陶文铨). Heat transfer[M]. 4th
[15] SABBAH R, FARID M M. Micro-channel heat sink with slurry of Edition. Beijing: Higher Education Press (高等教育出版社), 2006:
water with micro-encapsulated phase change material: 3D-numerical 33-60.