Page 110 - 《精细化工》2022年第1期
P. 110

·100·                             精细化工   FINE CHEMICALS                                 第 39 卷

            的协同作用使过滤和氧化甲醛同时进行。随着可见                                 [J]. Catalysis Science & Technology, 2015, 5(4): 2305-2313.
                                                               [8]   GUO  Y L, WEN  M C,  LI G Y,  et al. Recent advances in VOC
            光照射时间的延长、反应温度的升高,复合纤维膜
                                                                   elimination by catalytic oxidation technology onto various
            去除甲醛的效率加快。TM/TPU-8%复合纤维膜的过                             nanoparticles catalysts: A critical review[J]. Applied Catalysis B:
                                                                   Environmental, 2021, 281: 119447.
            滤效果最好,对 PM 2.5 、PM 10 的过滤效率均达 99.9%
                                                               [9]   CHEN  R W, ZHANG H, WANG M  Y,  et al. Thermoplastic
            以上;去除甲醛的效率较高,在 40  ℃时甲醛的转化                             polyurethane nanofiber membrane based air filters for efficient
            率达 90%左右,且循环稳定性优异,经过 50 h 的循                           removal of ultrafine particulate matter PM 0.1[J]. ACS Applied Nano
                                                                   Materials, 2020, 4(1): 182-189.
            环使用后,甲醛转化率仍能达到 83%以上。本文通                           [10]  State Administration for Market  Regulation, Standardization
            过在复合纤维膜中掺杂少量的金属氧化物达到持续                                 Administration.  Textiles-test  methods for filtration of  particulate
                                                                   matter: GB/T 38413—2019[S]. Beijing: China Standard Press (中国
            分解甲醛的目的,且不会产生有害的副产物或二次                                 标准出版社), 2019: 6-7.
            污染,解决了活性炭吸附法存在的问题,为纤维膜                             [11]  Ministry of Environmental Protection of the People's Republic of
                                                                   China. Air quality—determination of formaldehyde—acetylacetone
            在低温可见光条件下过滤空气的同时高效氧化甲                                  spectrophotometric method: GB/T 15516—1995[S]. Beijing: China
            醛提供了新方向。                                               Standard Press (中国标准出版社), 1995: 127-131.
                                                               [12]  SHENG F X(盛凤翔). Study on oxidation of  organic  pollutants
                                                                   catalyzed by activated carbon fiber supported cobalt phthalocyanine
            参考文献:
                                                                   [D].  Hangzhou: Zhejiang Sci-Tech University (浙江理工大学),
            [1]   HUANG Y, LIU Y,  WANG  W,  et al. Oxygen vacancy-engineered   2011.
                 δ-MnO 2/activated carbon for room-temperature catalytic oxidation of   [13]  YUAN W J (袁文俊), ZHOU Y M (周勇敏). Reasons for aggregation
                 formaldehyde[J]. Applied Catalysis B: Environmental, 2020, 278:   of nanoparticles and solutions[J]. Materials Reports  (材料导报),
                 119294.                                           2008, 22(S3): 59-61.
            [2]   SONG X (宋祥). The research about ventilation and indoorpollution   [14]  LI M (李曼), FENG Q (凤权), WU D S (武丁胜), et al. Preparation
                 in residential buildings in severe cold climate regions of China[D].   and property of PAN-PVP nanofiber/viscose spunlace  nonwoven
                 Tianjin: Tianjin University (天津大学), 2018.         composite[J]. New Chemical Materials (化工新型材料), 2020,
            [3]   YAN S R (闫生荣), TAN W W  (谭维维),  YANG C H  (杨春和),   48(8): 137-140,145.
                 et al. Research progress on purification of formaldehyde pollution by   [15]  CHEN H X, ZHANG R D, WANG H, et al. Encapsulating uniform
                 indoor ornamental plants[J]. Biology Teaching (生物学教学), 2012,   Pd nanoparticles in TS-1 zeolite as efficient catalyst for catalytic
                 37(5): 48-50.                                     abatement of indoor formaldehyde at room temperature[J]. Applied
            [4]   LE Y, GUO D P, CHENG B, et al. Bio-template-assisted synthesis of   Catalysis B: Environmental, 2020, 278: 119311.
                 hierarchically hollow SiO 2 microtubes and their enhanced formaldehyde   [16]  Ministry of Environmental Protection of the People's Republic of
                 adsorption performance[J]. Applied Surface Science, 2013, 274:   China, General Administration of Quality Supervision, Inspection
                 110-116.                                          and Quarantine of the People's Republic of China. Ambient air
            [5]   WANG H X (王红侠), TANG L (汤亮). Preparation of anatase TiO 2   quality standards: GB/T 3095—2012[S]. Beijing: China Environmental
                 nano-particle by sol-gel method and its photocatlytic properties[J].   Science Press (中国环境科学出版社), 2012: 3-5.
                 Hot Working Technology (热加工工艺), 2013, 42(4): 28-30.     [17]  The State  Bureau  of Quality and Technical Supervision. Hygienic
            [6]   LIN H Q (林慧琪). Study on formaldehyde catalytic performance of   standard for formaldehyde in indoor air of house: GB/T16127—
                 nano manganese dioxide composites[D]. Heifei: Heifei University of   1995[S]. Beijing: China Standard Press (中国标准出版社), 1995: 1.
                 Technology (合肥工业大学), 2018.                    [18]  NING W W (宁伟伟). The preparation  of TiO 2  nanofiber and
            [7]   ZHANG  J  H, LI Y B, WANG  L,  et al. Catalytic oxidation of   photocatalysis functions for the degradation of formaldehyde[D].
                 formaldehyde over manganese oxides with different crystal structures     Shanghai: Donghua University (东华大学), 2017.


            (上接第 94 页)                                             study[J]. Applied Thermal Engineering, 2008, 29(2): 445-454.
            [10]  YU Z J (俞臻杰), ZHANG G H (张冠华), CUI G M (崔国民) , et al.   [16]  RAJABIFAR B, SEYF H R, ZHANG Y, et al. Flow and heat transfer
                 Fabrication of novel nano phase change emulsion with low supercooling   in micro pin fin heat sinks with nano-encapsulated phase change
                 and enhanced thermal  conductivity[J]. Journal of Engineering for   materials[J]. Journal of Heat Transfer, 2016, 138(6): 1-8.
                 Thermal Energy and Power (热能动力工程), 2010, 35(10): 146-166.   [17]  ZHAO W L (赵文亮), YAN A J (闫爱军), FU J H(付纪华). Study on
            [11]  WANG F X, FANG X N, ZHANG Z G. Preparation of phase change   water quality control index of internal cooling water in HVDC
                 material  emulsions with good stability  and little supercooling by   converter valve[J]. Shaanxi Electric Power (陕西电力), 2014, 42(8):
                 using a mixed polymeric emulsifier for thermal energy storage[J].   76-81.
                 Solar Energy Materials and Solar Cells, 2018, 176(6): 381-390.     [18]  LI G X (李国兴), JIANG Z Q (姜子秋). Requirement and control of
            [12]  CHEN J, ZHANG P. Preparation and characterization of nano-sized   internal cooling water quality of convertor valve[J]. Heilongjiang
                 phase change emulsions as  thermal energy storage and transport   Electric Power (黑龙江电力), 2013, 35(6): 542-545.
                 media[J]. Apply Energy, 2017, 190(7): 868-879.     [19]  ZHOU H (周辉).  Insulation characteristics  of combined gases[J].
            [13]  HUANG M J,  EAMES P C,  MCCORMACK S,  et al.     High Voltage Apparatus (高压电器), 2003, 39(5): 13-19.
                 Microencapsulated phase change slurries for thermal energy storage   [20] WANG Y (王悦). Insulation characteristics of SF 6N 2 gas mixture in
                 in a residential solar energy system[J]. Renewable Energy, 2011,   low temperature  environment[D].  Harbin: Harbin Institute of
                 36(11): 2932-2939.                                Technology (哈尔滨工业大学), 2016.
            [14]  WANG L (王亮), WANG T (王涛), LIN G P (林贵平). Analysis of   [21]  ZHU J Y (朱皆悦). Comparative analysis on water cooling system of
                 heat dissipation performance of liquid cooling suit using latent heat   HVDC transmission valve[D]. Beijing: North China Electric Power
                 functional  thermal fluid[J]. Aerospace Medicine and Medical   University (华北电力大学), 2014.
                 Engineering (航天医学与医学工程), 2011, 24(3): 186-190.     [22]  YANG S M (杨世铭), TAO W  Q  (陶文铨). Heat transfer[M]. 4th
            [15]  SABBAH R, FARID M M. Micro-channel heat sink with slurry of   Edition. Beijing: Higher Education  Press  (高等教育出版社), 2006:
                 water with micro-encapsulated phase change material: 3D-numerical   33-60.
   105   106   107   108   109   110   111   112   113   114   115