Page 214 - 《精细化工》2022年第10期
P. 214
·2148· 精细化工 FINE CHEMICALS 第 39 卷
化学), 2021, 38(2): 284-290. [24] WANG X (王训), ZU Y (祖庸), LI X E (李晓娥). Surface
[6] SHARMA G, MOHANTY K K. Wettability alteration in high- modification of nanometer TiO 2[J].Chemical Industry and Engineering
temperature and high-salinity carbonate reservoirs[J]. SPE Journal, Progress (化工进展), 2000, 19(1): 67-70.
2013, 18(4): 646-655. [25] WANG S L (王所良), WANG X Y (汪小宇), HUANG C (黄超),
[7] HAN Y X (韩跃新), CHEN J H (陈经华), WANG Z H (王泽红), et al. Research progress of EOR with alteration of rock wettability in
et al. Study on surface modification of nanometer calcium low-permeability reservoir[J]. Fault-Block Oil & Gas Field (断块油
carbonate[J]. Mining and Metallurgy (矿冶), 2003, 12(1): 48-51. 气田), 2012, 19(4): 472-476.
[8] PAN Y (潘一),LIAO S Z (廖松泽),YANG S C (杨双春),et al. [26] HOU B F, JIA R X, FU M L, et al. Mechanism of wettability
Research on nanomaterials in oilfield for oil recovery enhancement[J]. alteration of an oil-wet sandstone surface by a novel cationic Gemini
Materials China (中国材料进展), 2021, 40(3): 210-217. surfactant[J]. Energy & Fuels, 2019, 33(5): 4062-4069.
[9] GUO L J (郭立娟), SONG R T (宋汝彤), GUO Y J (郭拥军), et al. [27] QI Z Y, WANG Y F, HE H, et al. Wettability alteration of the quartz
Effect of cationic surfactants on the stability of the nano-SiO 2 surface in the presence of metal cations[J]. Energy & Fuels, 2013,
fluid[J]. Bulletin of the Chinese Ceramic Society (硅酸盐通报), 27(12): 7354-7359.
2014, 33(4): 940-946. [28] MOHAN A C, RENJANADEVI B. Preparation of zinc oxide
[10] ZHANG Z X (章正熙), HUA Y Q (华幼卿), CHEN J F (陈建峰), nanoparticles and its characterization using scanning electron
et al. Study on surface modification of nano calcium carbonate and microscopy (SEM) and X-ray diffraction (XRD)[J]. Procedia
its mechanism[J]. Journal of Beijing University of Chemical Technology, 2016, 24: 761-766.
Technology(Natural Science Edition) (北京化工大学学报: 自然科 [29] HLAWACEK G, AHMAD I, SMITHERS M A, et al. To see or not to
学版), 2002, 29(3): 49-52. see: Imaging surfactant coated nano-particles using HIM and
[11] HE L P (贺丽鹏), LUO J H (罗健辉), DING B (丁彬), et al. SEM[J]. Ultramicroscopy, 2013, 135: 89-94.
Preparation and performance of nano-oil displacement agents in [30] KOCA H D, DOGANAY S, TURGUT A, et al. Effect of particle size
ultra-low permeability reservoirs[J]. Oilfield Chemistry (油田化学), on the viscosity of nanofluids: A review[J]. Renewable and Sustainable
2018,35 (1): 81-84,90. Energy Reviews, 2018, 82: 1664-1674.
[12] KANG X L (康雪丽), CHEN Q B (陈启斌), SHANG Y Z (尚亚卓), [31] CHAKRABORTY S, PANIGRAHI P K. Stability of nanofluid: A
et al. Interaction between gemini and DNA at the air/water interface[J]. review[J]. Applied Thermal Engineering, 2020, 174: 115259.
Acta Physico-Chimica Sinica (物理化学学报), 2011, 27(6): 1467- [32] CACUA K, ORDO E Z F, ZAPATA C, et al. Surfactant concentration
1473. and pH effects on the Zeta potential values of alumina nanofluids to
[13] DI Q F (狄勤丰), SHEN C (沈琛), WANG Z H (王掌洪), et al. inspect stability[J]. Colloids and Surfaces A: Physicochemical and
Experimental research on flow in micro channels of rocks using Engineering Aspects, 2019, 583: 123960.
nano-particle adsorption mechod[J]. Acta Petrolei Sinica (石油学报), [33] YE Z B (叶仲斌), XU J T (徐金腾), YIN F J (印风军), et al. Effect
2009,30 (1): 125-128. of injected water composition on the Zeta potential of liquid-solid
[14] WANG L (王丽), ZHOU H W (周宏伟), JIANG W Y (蒋文远), interface in reservoir[J]. Fine Chemicals (精细化工), 2018, 35(10):
et al. Hydrophobic modification of nano-silica and its stabilizing 1765-1771.
effect on Pickering emulsions[J]. Fine Chemicals (精细化工), 2016, [34] SADEQI-MOQADAM M, RIAHI S, BAHRAMIAN A. An
33(3): 252-258. investigation into the electrical behavior of oil/water/reservoir rock
[15] GIRALDO J, BENJUMEA P, LOPERA S, et al. Wettability interfaces: The implication for improvement in wettability
alteration of sandstone cores by alumina-based nanofluids[J]. Energy prediction[J]. Colloids and Surfaces A: Physicochemical and
& Fuels, 2013, 27(7): 3659-3665. Engineering Aspects, 2016, 490: 268-282.
[16] LIU B, LIU J. Surface modification of nanozymes[J]. Nano [35] DHAMODHARAN P, GOBI R, SHANMUGAM N, et al. Synthesis
2+
Research, 2017, 10(4): 1125-1148. and characterization of surfactants assisted Cu doped ZnO
[17] AL-ANSSARI S, BARIFCANI A, WANG S, et al. Wettability nanocrystals[J]. Spectrochimica Acta Part A: Molecular and
alteration of oil-wet carbonate by silica nanofluid[J]. Journal of Biomolecular Spectroscopy, 2014, 131: 125-131.
Colloid and Interface Science, 2016, 461: 435-442. [36] SOMASUNDARAN P, ZHANG L. Adsorption of surfactants on
[18] ZHAO M, LYU W, LI Y, et al. Study on the synergy between silica minerals for wettability control in improved oil recovery processes[J].
nanoparticles and surfactants for enhanced oil recovery during Journal of Petroleum Science and Engineering, 2006, 52(1/2/3/4):
spontaneous imbibition[J]. Journal of Molecular Liquids, 2018, 261: 198-212.
373-378. [37] JARRAHIAN K, SEIEDI O, SHEYKHAN M, et al. Wettability
[19] NWIDEE L N, LEBEDEV M, BARIFCANI A, et al. Wettability alteration of carbonate rocks by surfactants: A mechanistic study[J].
alteration of oil-wet limestone using surfactant-nanoparticle Colloids and Surfaces A: Physicochemical and Engineering Aspects,
formulation[J]. Journal of Colloid and Interface Science, 2017, 504: 2012, 410: 1-10.
334-345. [38] SALEHI M, JOHNSON S J, LIANG J T. Mechanistic study of
[20] KHALAFI E, HASHEMI A, ZALLAGHI M, et al. An experimental wettability alteration using surfactants with applications in naturally
investigation of nanoparticles assisted surfactant flooding for fractured reservoirs[J]. Langmuir, 2008, 24(24): 14099-14107.
improving oil recovery in a micromodel system[J]. Journal of [39] STANDNES D C, AUSTAD T. Wettability alteration in chalk: 2.
Petroleum & Environmental Biotechnology, 2018, 9(355): 2. Mechanism for wettability alteration from oil-wet to water-wet using
[21] FENG X Y (冯晓羽), HOU J R (侯吉瑞), CHENG T T (程婷婷), surfactants[J]. Journal of Petroleum Science and Engineering, 2000,
et al. Preparation and oil displacement properties of oleic acid- 28(3): 123-143.
modified nano-TiO 2[J]. Oilfield Chemistry (油田化学), 2019,36(2): [40] HOU B F, JIA R X, FU M L, et al. Wettability alteration of an oil-wet
280-285. sandstone surface by synergistic adsorption/desorption of cationic/
[22] PENG J (彭珏), KANG Y L (康毅力). Effect of wettability and its nonionic surfactant mixtures[J]. Energy & Fuels, 2018, 32(12):
evolution on oil reservoir recovery[J].Petroleum Geology and 12462-12468.
Recovery Efficiency (油气地质与采收率), 2008, 15(1): 72-76. [41] SUN Z (孙哲), QIANG X H (强西怀), CHEN W (陈渭), et al.
[23] ZHANG R (张瑞), HU B Y (胡冰艳), FAN K Y (樊开赟), et al. The Preparation and properties of amphoteric polyurethane surfactant[J].
study of the reversal wettability on lipophilic /hydrophilic surface of Fine Chemicals (精细化工), 2015, 32(8): 863-867.
gemini surfactant[J]. Oilfield Chemistry (油田化学), 2011, 28(2):
152-157. (下转第 2160 页)