Page 33 - 《精细化工》2022年第11期
P. 33
第 11 期 陈 珍,等: MXene 的制备与改性及其在功能涂层中的应用 ·2183·
[51] BALC E, AKKUS Ü Ö, BERBER S. Band gap modification in performance of Ti 3C 2 MXene modified with tetradecylphosphonic
doped MXene: SC 2CF 2[J]. Journal of Materials Chemistry C, 2017, acid[J]. Colloids and Surfaces A: Physicochemical and Engineering
24: 5956-5961. Aspects, 2021, 625(20): 126903.
+
[52] LI J B, LIU Y, XU F, et al. K intercalation of NH 4HF 2-exfoliated [71] LEE G S, YUN T, KIM H, et al. Mussel inspired highly aligned
Ti 3C 2 MXene as binder-free electrodes with high electrochemical Ti 3C 2T x MXene film with synergistic enhancement of mechanical
capacitance[J]. Physica Status Solidi A-Applications and Materials strength and ambient stability[J]. ACS Nano, 2020, 14(9):
Science, 2020, 217(8): 1900806. 11722-11732.
[53] GHANI A A, SHAHZAD A, MOZTAHIDA M, et al. Adsorption and [72] SHI X L, WANG H K, XIE X T, et al. Bioinspired ultrasensitive and
electrochemical regeneration of intercalated Ti 3C 2T x MXene for the stretchable MXene-based strain sensor via nacre-mimetic microscale
removal of ciprofloxacin from wastewater[J]. Chemical Engineering "brick-and-mortar" architecture[J]. ACS Nano, 2019, 13(1): 649-659.
Journal, 2021, 421(1): 127780. [73] ZHANG W B, PAN Z Y, MA J Z, et al. Degradable cross-linked
[54] WANG X F, SHEN X, GAO Y R, et al. Atomic-scale recognition of collagen fiber/MXene composite aerogels as a high-performing
surface structure and intercalation mechanism of Ti 3C 2X[J]. Journal sensitive pressure sensor[J]. ACS Sustainable Chemistry &
of the American Chemical Society, 2015, 137(7): 2715-2721. Engineering, 2022, 10(4): 1408-1418.
[55] KAJIYAMA S, SZABOVA L, IINUMA H, et al. Enhanced Li-ion [74] LI Q Y, ZHONG B C, ZHANG W Q, et al. Ti 3C 2 MXene as a new
accessibility in MXene titanium carbide by steric chloride nanofiller for robust and conductive elastomer composites[J].
termination[J]. Advanced Energy Materials, 2017, 7(9): 1601873. Nanoscale, 2019, 11(31): 14712-14719.
[56] ZHANG C, WANG L, LEI W, et al. Achieving quick charge/ [75] UZUN S, SEYEDIN S, ALHABEB M, et al. Knittable and washable
discharge rate of 3.0 V/s by 2D titanium carbide (MXene) via N-dope multifunctional MXene-coated cellulose yarns[J]. Advanced
dcarbon intercalation[J]. Materials Letters, 2019, 234(1): 21-25. Functional Materials, 2019, 29(45):1905015.
[57] ZHENG W, ZHANG P G, TIAN W B, et al. Alkali treated Ti 3C 2T x [76] LUO J C, GAO S J, LUO H, et al. Superhydrophobic and breathable
MXenes and their dye adsorption performance[J]. Materials smart MXene-based textile for multifunctional wearable sensing
Chemistry and Physics, 2018, 206: 270-276. electronics[J]. Chemical Engineering Journal, 2021, 406: 126898.
[58] LV G X, WANG J, SHI Z Q, et al. Intercalation and delamination of [77] LORENCOVA L, GAJDOSOVA V, HRONCEKOVA S, et al.
two-dimensional MXene (Ti 3C 2T x) and application in sodium-ion Electrochemical investigation of interfacial properties of Ti 3C 2T x
batteries[J]. Materials Letters, 2018, 219: 45. MXene modified by aryldiazonium betaine derivatives[J]. Frontiers
[59] LIU L, YING G B, ZHAO Y L, et al. Attapulgite-MXene hybrids in Chemistry, 2020, 8: 553.
with Ti 3C 2T x lamellae surface modified by attapulgite as a [78] WANG S J, LI D S, JIANG L. Synergistic effects between MXenes
mechanical reinforcement for epoxy composites[J]. Polymers, 2021, and Ni chains in flexible and ultrathin electromagnetic interference
13(11): 1820-1820. shielding films[J]. Advanced Materials Interfaces, 2019, 6(19):
[60] LU C J, YANG L, YAN B Z, et al. Nitrogen-doped Ti 3C 2 MXene: 1900961.
Mechanism investigation and electrochemical analysis[J]. Advanced [79] LUO J Q, ZHAO S, ZHANG H B, et al. Flexible, stretchable and
Functional Materials, 2020, 30(47): 2000852. electrically conductive MXene/natural rubber nanocomposite films
[61] YANG C H, TANG Y, TIAN Y P, et al. Methanol and diethanolamine for efficient electromagnetic interference shielding[J]. Composites
assisted synthesis of flexible nitrogen-doped Ti 3C 2 (MXene) film for Science and Technology, 2019, 182: 107754.
ultrahigh volumetric performance supercapacitor electrodes[J]. ACS [80] SUN R H, ZHANG H B, LIU J, et al. Highly conductive transition
Applied Energy Materials, 2020, 3(1): 586-596. metal carbide/carbonitride (MXene)@polystyrene nanocomposites
[62] LI J B, YAN D, HOU S J, et al. Improved sodium-ion storage fabricated by electrostatic assembly for highly efficient electromagnetic
performance of Ti 3C 2T x MXenes by sulfur doping[J]. Journal of interference shielding[J]. Advanced Functional Materials, 2017,
Materials Chemistry A, 2018, 6(3): 1234-1243. 27(45): 1702807.
[63] WEN Y Y, LI R, LIU J H, et al. A temperature-dependent phosphorus [81] JIN X X, WANG J F, DAI L Z, et al. Flame-retardant poly(vinyl
doping on Ti 3C 2T x MXene for enhanced supercapacitance[J]. Journal alcohol)/MXene multilayered films with outstanding electromagnetic
of Colloid and Interface Science, 2021, 604: 239-247. interference shielding and thermal conductive performances[J].
[64] PAN Z H, JI X H. Facile synthesis of nitrogen and oxygen co-doped Chemical Engineering Journal, 2020, 380: 122475.
C@Ti 3C 2 MXene for high performance symmetric supercapacitors [82] ZHENG X H, WANG P, ZHANG X S, et al. Breathable, durable and
[J]. Journal of Power Sources, 2019, 439(1): 227068. bark-shaped MXene/textiles for high-performance wearable pressure
[65] ONYIA I C, STELLA E O, BESSARABOV D, et al. Density sensors, EMI shielding and heat physiotherapy[J]. Composites, Part
functional theory studies of transition metal doped Ti 3N 2 MXene A: Applied Science and Manufacturing, 2022, 152: 106700.
monolayer[J]. Computational Materials Science, 2021, 197: 110613. [83] WANG X L, WANG L B, HE Y, et al. The effect of two-dimensional
[66] MENG Z, ZHANG B K, PENG Q, et al. MXenes modified by single d-Ti 3C 2 on the mechanical and thermal conductivity properties of
transition metal atom for hydrogen evolution reaction catalysts[J]. thermoplastic polyurethane composites[J]. Polymer Composites,
Applied Surface Science, 2021, 562: 150151. 2020, 41(1): 350-359.
[67] ZHAO X F, VASHISTH A, PREHN E, et al. Green antioxidants [84] PAN Y, FU L, ZHOU Q W, et al. Flammability, thermal stability and
unlock shelf-stable Ti 3C 2T x(MXene) nanosheet dispersions[J]. mechanical properties of polyvinyl alcohol nanocomposites reinforced
Matter, 2019, 1(2): 513-526. with delaminated Ti 3C 2T x(MXene)[J]. Polymer Composites, 2019,
[68] ZHU L, LV J, YU X F, et al. Further construction of MnO 2 composite 33(4): 234-245.
through in-situ growth on MXene surface modified by carbon coating [85] LIU L, ZHU M H, SHI Y Q, et al. Functionalizing MXene towards
with outstanding catalytic properties on thermal decomposition of highly stretchable, ultratough, fatigue and fire-resistant polymer
ammonium perchlorate[J]. Applied Surface Science, 2020, 502: nanocomposites[J]. Chemical Engineering Journal, 2021, 424: 130338.
144171. [86] LIU R T, MIAO M, LI Y H, et al. Ultrathin biomimetic polymeric
[69] JI J J, ZHAO L F, SHEN Y F, et al. Covalent stabilization and Ti 3C 2T x MXene composite films for electromagnetic interference
functionalization of MXene via silylation reactions with improved shielding[J]. ACS Applied Materials & Interfaces, 2018, 10(51):
surface properties[J]. FlatChem, 2019, 17: 100128. 44787-44795.
[70] FENG Q, DENG F K, LI K C, et al. Enhancing the tribological (下转第 2214 页)