Page 74 - 《精细化工》2022年第11期
P. 74
·2224· 精细化工 FINE CHEMICALS 第 39 卷
2020, 363: 137201. [41] MOHIDEEN M M, LIU Y, RAMAKRISHNA S. Recent progress of
[23] REDDY A L M, SHAIJUMON M M, GOWDA S R, et al. Coaxial carbon dots and carbon nanotubes applied in oxygen reduction
MnO 2/carbon nanotube array electrodes for high-performance reaction of fuel cell for transportation[J]. Applied Energy, 2020, 257:
lithium batteries[J]. Nano Letters, 2009, 9(3): 1002-1006. 114027.
[24] ZHAO C Y, GUO Z K, ZHAO D, et al. High lithiophilic [42] LI X D, HUANG M G, HUANG B, et al. Fabrication and catalytic
nitrogen-doped carbon nanotube arrays prepared by in-situ catalyze properties of highly ordered single-walled carbon nanotube arrays
for lithium metal anode[J]. Chinese Chemical Letters, 2021, 32(7): coated with photoelectro-polymerized bisphenol A films for visible-
2254-2258. light-enhanced ascorbate fuel cells[J]. Journal of Electroanalytical
[25] ZHANG W D, FANG Z Y, SONG H H, et al. Binary metal oxide Chemistry, 2017, 803: 117-124.
anchored into dense N-doped CNTs arrays: Concerted pseudo [43] YU D S, XUE Y H, DAI L M. Vertically aligned carbon nanotube
capacitance and diffusion behavior for long-cyclic Li-ion half/full arrays Co-doped with phosphorus and nitrogen as efficient metal-free
batteries[J]. Applied Surface Science, 2022, 577: 151618. electrocatalysts for oxygen reduction[J]. Journal of Physical Chemistry
[26] LI X L, ZHANG J X, QI G C, et al. Vertically aligned N-doped Letters, 2012, 3(19): 2863.
carbon nanotubes arrays as efficient binder-free catalysts for flexible [44] ZHANG W M, ANDREW L, GAO M, et al. PEM fuel cells:
Li-CO 2 batteries[J]. Energy Storage Materials, 2021, 35: 148-156. Integrated high-efficiency Pt/carbon nanotube arrays for PEM fuel
[27] LI Y, HUANG Y F, ZHANG Z L, et al. Preparation and structural cells[J]. Advanced Energy Materials, 2011, 1(4): 671-677.
evolution of well aligned-carbon nanotube arrays onto conductive [45] WEN Z H, WANG Q, LI J H. Template synthesis of aligned carbon
carbon-black layer/carbon paper substrate with enhanced discharge nanotube arrays using glucose as a carbon source: Pt decoration of
capacity for Li-air batteries[J]. Chemical Engineering Journal, 2016, inner and outer nanotube surfaces for fuel-cell catalysts[J]. Advanced
283: 911-921. Functional Materials, 2010, 18(6): 959-964.
[28] ZENG G Y, NIAN K S, LEE K Y. Characteristics of a dye-sensitized [46] GONG K P, DU F, XIA Z H, et al. Nitrogen-doped carbon nanotube
solar cell based on an anode combining ZnO nanostructures with arrays with high electrocatalytic activity for oxygen reduction[J].
vertically aligned carbon nanotubes[J]. Diamond & Related Materials, Science, 2009, 323(5915): 760-764.
2010, 19(12): 1457-1460. [47] VICENTINI R, COSTA L H, NUNES W, et al. Direct growth of
[29] LEE K S, LEE W J, PARK N G, et al. Transferred vertically aligned mesoporous carbon on aluminum foil for supercapacitors devices[J].
N-doped carbon nanotube arrays: Use in dye-sensitized solar cells as Journal of Materials Science Materials in Electronics, 2018, 29(12):
counter electrodes[J]. Chemical Communications, 2011, 47(14): 10573-10582.
4264-4266. [48] GUO W H, LIU C, SUN X M, et al. Aligned carbon
[30] YUN D J, RA H, KIM J M, et al. Multi-walled carbon nanotube nanotube/polymer composite fibers with improved mechanical
forests covered with atomic-layer-deposited ruthenium layers for strength and electrical conductivity[J]. Journal of Materials
high-performance counter electrodes of dye-sensitized solar cells[J]. Chemistry, 2011, 22(3): 903-908.
Organic Electronics, 2018, 65: 349-356. [49] LUO Y F, WANG X J, HE M D, et al. Synthesis of high-quality
[31] TIAN W L, LI H Y, QIN B C, et al. Tuning the wettability of carbon carbon nanotube arrays without the assistance of water[J]. Journal of
nanotube arrays for efficient bifunctional catalysts and Zn-air Nanomaterials, 2012, 2012(4): 542582.
batteries[J]. Journal of Materials Chemistry A, 2017, 5(15): 7103-7110. [50] ZHANG Q B, LIU Z C, ZHAO B T, et al. Design and understanding
[32] CAI X, XIA B Y, FRANKLIN J, et al. Free-standing vertically- of dendritic mixed-metal hydroxide carbon nanotube array electrode
aligned nitrogen-doped carbon nanotube arrays/graphene as for high-performance asymmetric supercapacitors[J]. Energy Storage
air-breathing electrodes for rechargeable zinc-air batteries[J]. Journal Materials, 2019, 16: 632-645.
of Materials Chemistry A, 2017, 5(6): 2488-2495. [51] HU Y, ZHAO Y, LU G W, et al. Graphene quantum dots-carbon
[33] WANG Y, YAN F, MA X Z, et al. Hierarchically 3D bifunctional nanotube hybrid arrays for supercapacitors[J]. Nanotechnology,
catalysts assembled with 1D MoC core/branched N-doped CNT 2013, 24(19): 195401.
arrays for zinc-air batteries[J]. Electrochimica Acta, 2020, 367: [52] MA H, GUO W H, SHEN S H, et al. Rational fabrication of carbon
137522. nanotubes arrays on porous nickel matrix as advanced electrode
[34] NIU W H, PAKHIRA S, MARCUS K, et al. Apically dominant materials of supercapacitors[J]. Materials Research Bulletin, 2018,
mechanism for improving catalytic activities of N-doped carbon 105: 172-177.
nanotube arrays in rechargeable zinc-air battery[J]. Laser Physics [53] ZHANG Z T, WANG L, LI Y M, et al. Nitrogen-doped core-sheath
Review, 2018, 8(20): 1800480. carbon nanotube array for highly stretchable supercapacitor[J].
[35] LIU L N, ZHANG X, YAN F, et al. Self-supported N-doped CNT Advanced Energy Materials, 2016, 7(5): 1601814.
arrays for flexible Zn-air batteries[J]. Journal of Materials Chemistry [54] ZHAO Y, CAO J Y, ZHANG Y, et al. Gradually crosslinking carbon
A, 2020, 8(35): 18162-18172. nanotube array in mimicking the beak of giant squid for compression
[36] LIU L N, WANG Y, YAN F, et al. Cobalt-encapsulated ㏒ ensing supercapacitor[J]. Advanced Functional Materials, 2019,
nitrogen-doped carbon nanotube arrays for flexible zinc-air 30(29): 1902971.
batteries[J]. Small Methods, 2020, 4(1): 1900571. [55] YANG M Y, ZENG X, ZHANG X H, et al. 3D silk fibroin/carbon
[37] LI Z H, SHAO M F, YANG Q H, et al. Directed synthesis of carbon nanotube array composite matrix for flexible solid-state
nanotube arrays based on layered double hydroxides toward highly- supercapacitors[J]. New Journal of Chemistry, 2020, 44: 6575-6582.
efficient bifunctional oxygen electrocatalysis[J]. Nano Energy, 2017, [56] ZHU Q, YUAN X T, ZHU Y H, et al. Effect of distribution, interface
37: 98-107. property and density of hydrogel-embedded vertically aligned carbon
[38] ZHU C Y, MA Y Y, ZANG W J, et al. Conformal dispersed cobalt nanotube arrays on the properties of a flexible solid state
nanoparticles in hollow carbon nanotube arrays for flexible Zn-air supercapacitor[J]. Nanotechnology, 2018, 29: 195405.
and Al-air batteries[J]. Chemical Engineering Journal, 2019, 369: [57] WU X X, YANG Y W, ZHANG T, et al. CeO x-decorated hierarchical
988-995. NiCo 2S 4 hollow nanotubes arrays for enhanced oxygen evolution
[39] XIA B Y, YAN Y, XU Y Y, et al. Bifunctional nickel ferrite decorated reaction electrocatalysis[J]. ACS Applied Materials & Interfaces,
carbon nanotubes arrays as the free-standing air electrode for 2019, 11(43): 39841-39847.
rechargeable Zn-air batteries[J]. Journal of Materials Chemistry A, [58] LI R, LI X D, YU D S, et al. Ni 3ZnC 0.7 nanodots decorated nitrogen-
2020, 8: 5070-5077. doped carbon nanotube arrays as a self-standing bifunctional
[40] JI D X, FAN L, LI L L, et al. Hierarchical catalytic electrodes of electrocatalyst for overall water splitting[J]. Carbon, 2019, 148:
cobalt-embedded carbon nanotube/carbon flakes arrays for flexible 496-503.
solid-state zinc-air batteries[J]. Carbon, 2019, 142: 379-387. (下转第 2267 页)