Page 74 - 《精细化工》2022年第11期
P. 74

·2224·                            精细化工   FINE CHEMICALS                                 第 39 卷

                 2020, 363: 137201.                            [41]  MOHIDEEN M M, LIU Y, RAMAKRISHNA S. Recent progress of
            [23]  REDDY A L M, SHAIJUMON M M, GOWDA S R, et al. Coaxial   carbon dots and carbon  nanotubes applied in  oxygen  reduction
                 MnO 2/carbon nanotube array electrodes for  high-performance   reaction of fuel cell for transportation[J]. Applied Energy, 2020, 257:
                 lithium batteries[J]. Nano Letters, 2009, 9(3): 1002-1006.     114027.
            [24]  ZHAO C  Y,  GUO Z K, ZHAO D,  et al. High lithiophilic   [42]  LI X D, HUANG M G, HUANG B, et al. Fabrication and catalytic
                 nitrogen-doped carbon nanotube arrays prepared by in-situ catalyze   properties  of highly ordered single-walled carbon nanotube arrays
                 for lithium  metal  anode[J]. Chinese Chemical  Letters, 2021, 32(7):   coated with photoelectro-polymerized bisphenol A films for visible-
                 2254-2258.                                        light-enhanced ascorbate fuel cells[J]. Journal of Electroanalytical
            [25]  ZHANG W D, FANG Z Y, SONG H H, et al. Binary metal oxide   Chemistry, 2017, 803: 117-124.
                 anchored into  dense N-doped CNTs arrays: Concerted pseudo   [43]  YU D S, XUE Y H, DAI L M. Vertically aligned carbon nanotube
                 capacitance  and diffusion behavior for long-cyclic  Li-ion half/full   arrays Co-doped with phosphorus and nitrogen as efficient metal-free
                 batteries[J]. Applied Surface Science, 2022, 577: 151618.     electrocatalysts for oxygen reduction[J]. Journal of Physical Chemistry
            [26]  LI X L, ZHANG J X, QI  G C,  et al. Vertically  aligned N-doped   Letters, 2012, 3(19): 2863.
                 carbon nanotubes arrays as efficient binder-free catalysts for flexible   [44]  ZHANG W M, ANDREW L, GAO M,  et al. PEM fuel cells:
                 Li-CO 2 batteries[J]. Energy Storage Materials, 2021, 35: 148-156.     Integrated high-efficiency Pt/carbon nanotube arrays for PEM fuel
            [27]  LI Y, HUANG Y F, ZHANG Z L, et al. Preparation and structural   cells[J]. Advanced Energy Materials, 2011, 1(4): 671-677.
                 evolution of well aligned-carbon  nanotube arrays onto  conductive   [45]  WEN Z H, WANG Q, LI J H. Template synthesis of aligned carbon
                 carbon-black layer/carbon paper substrate with enhanced discharge   nanotube arrays using glucose as a carbon source: Pt decoration of
                 capacity for Li-air batteries[J]. Chemical Engineering Journal, 2016,   inner and outer nanotube surfaces for fuel-cell catalysts[J]. Advanced
                 283: 911-921.                                     Functional Materials, 2010, 18(6): 959-964.
            [28]  ZENG G Y, NIAN K S, LEE K Y. Characteristics of a dye-sensitized   [46]  GONG K P, DU F, XIA Z H, et al. Nitrogen-doped carbon nanotube
                 solar cell based on an anode combining ZnO nanostructures with   arrays with high electrocatalytic  activity for oxygen reduction[J].
                 vertically aligned carbon nanotubes[J]. Diamond & Related Materials,   Science, 2009, 323(5915): 760-764.
                 2010, 19(12): 1457-1460.                      [47]  VICENTINI  R, COSTA  L H, NUNES  W,  et al. Direct  growth of
            [29]  LEE K S, LEE W J, PARK N G, et al. Transferred vertically aligned   mesoporous carbon on aluminum foil for supercapacitors devices[J].
                 N-doped carbon nanotube arrays: Use in dye-sensitized solar cells as   Journal of Materials Science Materials in Electronics, 2018, 29(12):
                 counter electrodes[J]. Chemical    Communications,  2011,  47(14):   10573-10582.
                 4264-4266.                                    [48]  GUO W  H, LIU C, SUN X  M,  et al. Aligned carbon
            [30]  YUN  D J, RA  H,  KIM J M,  et al.  Multi-walled carbon nanotube   nanotube/polymer  composite fibers  with improved mechanical
                 forests covered with atomic-layer-deposited ruthenium layers for   strength and electrical conductivity[J]. Journal of  Materials
                 high-performance counter electrodes of dye-sensitized solar cells[J].   Chemistry, 2011, 22(3): 903-908.
                 Organic Electronics, 2018, 65: 349-356.       [49]  LUO Y F,  WANG  X J, HE M D,  et al. Synthesis of high-quality
            [31]  TIAN W L, LI H Y, QIN B C, et al. Tuning the wettability of carbon   carbon nanotube arrays without the assistance of water[J]. Journal of
                 nanotube arrays for efficient bifunctional catalysts and Zn-air   Nanomaterials, 2012, 2012(4): 542582.
                 batteries[J]. Journal of Materials Chemistry A, 2017, 5(15): 7103-7110.     [50]  ZHANG Q B, LIU Z C, ZHAO B T, et al. Design and understanding
            [32]  CAI X, XIA B Y, FRANKLIN J,  et al. Free-standing vertically-   of dendritic mixed-metal hydroxide carbon nanotube array electrode
                 aligned nitrogen-doped carbon nanotube arrays/graphene as   for high-performance asymmetric supercapacitors[J]. Energy Storage
                 air-breathing electrodes for rechargeable zinc-air batteries[J]. Journal   Materials, 2019, 16: 632-645.
                 of Materials Chemistry A, 2017, 5(6): 2488-2495.     [51]  HU  Y, ZHAO  Y, LU G W,  et al. Graphene quantum dots-carbon
            [33]  WANG Y,  YAN F, MA X Z,  et al. Hierarchically 3D bifunctional   nanotube hybrid arrays for supercapacitors[J]. Nanotechnology,
                 catalysts assembled with 1D MoC core/branched N-doped CNT   2013, 24(19): 195401.
                 arrays for zinc-air batteries[J]. Electrochimica  Acta, 2020, 367:   [52]  MA H, GUO W H, SHEN S H, et al. Rational fabrication of carbon
                 137522.                                           nanotubes arrays on porous nickel matrix as advanced electrode
            [34]  NIU W H, PAKHIRA S, MARCUS  K,  et al. Apically  dominant   materials of supercapacitors[J]. Materials Research Bulletin, 2018,
                 mechanism for improving catalytic activities  of N-doped carbon   105: 172-177.
                 nanotube arrays in rechargeable zinc-air battery[J]. Laser Physics   [53]  ZHANG Z T, WANG L, LI Y M, et al. Nitrogen-doped core-sheath
                 Review, 2018, 8(20): 1800480.                     carbon nanotube array for highly stretchable supercapacitor[J].
            [35]  LIU L  N, ZHANG X, YAN F,  et al. Self-supported N-doped CNT   Advanced Energy Materials, 2016, 7(5): 1601814.
                 arrays for flexible Zn-air batteries[J]. Journal of Materials Chemistry   [54]  ZHAO Y, CAO J Y, ZHANG Y, et al. Gradually crosslinking carbon
                 A, 2020, 8(35): 18162-18172.                      nanotube array in mimicking the beak of giant squid for compression
            [36]  LIU L N, WANG Y, YAN F,  et al. Cobalt-encapsulated   ㏒ ensing supercapacitor[J]. Advanced Functional Materials, 2019,
                 nitrogen-doped carbon  nanotube arrays for  flexible zinc-air   30(29): 1902971.
                 batteries[J]. Small Methods, 2020, 4(1): 1900571.     [55]  YANG M Y, ZENG X, ZHANG X H, et al. 3D silk fibroin/carbon
            [37]  LI Z H, SHAO M F, YANG Q H, et al. Directed synthesis of carbon   nanotube array  composite matrix for flexible solid-state
                 nanotube arrays based on layered double hydroxides toward highly-   supercapacitors[J]. New Journal of Chemistry, 2020, 44: 6575-6582.
                 efficient bifunctional oxygen electrocatalysis[J]. Nano Energy, 2017,   [56]  ZHU Q, YUAN X T, ZHU Y H, et al. Effect of distribution, interface
                 37: 98-107.                                       property and density of hydrogel-embedded vertically aligned carbon
            [38]  ZHU C Y, MA Y Y, ZANG W J, et al. Conformal dispersed cobalt   nanotube arrays  on the properties of a flexible solid state
                 nanoparticles in hollow carbon  nanotube arrays for flexible Zn-air   supercapacitor[J]. Nanotechnology, 2018, 29: 195405.
                 and Al-air batteries[J]. Chemical Engineering Journal, 2019, 369:   [57]  WU X X, YANG Y W, ZHANG T, et al. CeO x-decorated hierarchical
                 988-995.                                          NiCo 2S 4  hollow  nanotubes arrays for enhanced oxygen evolution
            [39]  XIA B Y, YAN Y, XU Y Y, et al. Bifunctional nickel ferrite decorated   reaction electrocatalysis[J]. ACS Applied Materials & Interfaces,
                 carbon nanotubes arrays as the free-standing air electrode for   2019, 11(43): 39841-39847.
                 rechargeable Zn-air batteries[J]. Journal of Materials Chemistry A,   [58]  LI R, LI X D, YU D S, et al. Ni 3ZnC 0.7 nanodots decorated nitrogen-
                 2020, 8: 5070-5077.                               doped carbon nanotube arrays as a self-standing  bifunctional
            [40]  JI D X, FAN  L,  LI L L,  et al. Hierarchical catalytic electrodes of   electrocatalyst for overall water splitting[J]. Carbon, 2019, 148:
                 cobalt-embedded carbon  nanotube/carbon flakes arrays for flexible   496-503.
                 solid-state zinc-air batteries[J]. Carbon, 2019, 142: 379-387.              (下转第 2267 页)
   69   70   71   72   73   74   75   76   77   78   79