Page 90 - 《精细化工》2022年第11期
P. 90
·2240· 精细化工 FINE CHEMICALS 第 39 卷
低于其他的硒化钴系列,与 NiCoSe 4 相近。因而, Edition, 2016, 128(23): 6814-6819.
[7] ROY A, JADHAV H S, THOTAT G M, et al. Electrochemical growth
本研究制备的 CoSe 2 @NF 催化剂具有突出的全解水 of Co(OH) 2 nanoflakes on Ni foam for methanol electro-oxidation[J].
性能。这归因于 CoSe 2 @NF 表面粗糙的串珠状纳米 New Journal of Chemistry, 2017, 41: 9546-9553.
[8] DOU S, LI X Y, LI T, et al. Cobalt nanoparticle-embedded carbon
线结构增加了有效活性位点的数量,在 OER 和 HER nanotube/porous carbon hybrid derived from MOF-encapsulated
反应过程中提高了其反应效率。 Co 3O 4 for oxygen electrocatalysis[J]. Chemical Communications,
2016, 52(62): 9727-9730.
[9] LIU H T, GUAN J Y, YANG S X, et al. Metal-organic framework-
derived Co 2P nanoparticle/multi-doped porous carbon as a trifunctional
electrocatalyst[J]. Advanced Materials, 2020, 32(36): 2003649-
2003656.
[10] GUO Y Y, YUAN P F, ZHANG J N, et al. Co 2P-CoN double active
centers confined in N-doped carbon nanotube: Heterostructural
engineering for trifunctional catalysis toward HER, ORR, OER, and
Zn-air batteries driven water splitting[J]. Advanced Functional
Materials, 2018, 28(51): 1805641-1805648.
[11] CHAJRABARTTY S, KARMAKAR S, RAJ C R. An electro-
catalytically active nanoflake-like Co 9S 8-CoSe 2 heterostructure for
overall water splitting[J]. ACS Applied Nano Materials, 2020, 3(11):
11326-11334.
[12] LI Y G, FU X, ZHU W X, et al. Self-ZIF template-directed synthesis
of a CoS nanoflake array as a Janus electrocatalyst for overall water
图 10 钴基硒化物全解水性能比较
splitting[J]. Inorganic Chemistry Frontiers, 2019, 6: 2090-2095.
Fig. 10 Comparison of overall water splitting performance [13] ZHOU Y, XIAO H Q, ZHANG S, et al. Interlayer expanded lamellar
of cobalt-based selenides CoSe 2 on carbon paper as highly efficient and stable overall water
splitting electrodes[J]. Electrochimica Acta, 2017, 141: 106-115.
[14] KONG D S, WANG H T, LU Z Y, et al. CoSe 2 nanoparticles grown
3 结论 on carbon fiber paper: An efficient and stable electrocatalyst for
hydrogen evolution reaction[J]. American Chemical Society, 2014,
利用水热法制备出 Co(OH)F@NF 后,对其在 136: 4897-4900.
[15] WAN S, JIN W Y, GUO X L, et al. Self-templating construction of
400 ℃硒化 2 h 得到表面粗糙的串珠状纳米线 porous CoSe 2 nanosheet arrays as efficient bifunctional electro-
CoSe 2 @NF,较大的长径比可增大催化剂与电解液 catalysts for overall water splitting[J]. ACS Sustainable Chemistry &
Engineering, 2018, 6(11): 15374-15382.
的接触面积。对其进行同一碱性电解液的双功能催 [16] WEI X L (卫学玲), BAO W W (包维维), JIANG P (蒋鹏) , et al.
化性能测试,其 OER 性能优于涂覆的 IrO 2 @NF;其 One-step hydrothermal synthesis of 3D flower-like Co 9S 8/MoS 2
@TM as efficient oxygen evolution electrode[J]. Fine Chemicals (精
HER 性能 与涂覆的 Pt/C@NF 相当。装 配有 细化工) , 2022, 39(1): 164-170.
2
CoSe 2 @NF 电极的碱性全解水槽在 20 mA/cm 电流 [17] TANG C, CHENG N Y, PU Z H, et al. NiSe nanowire film supported
on nickel foam: An efficient and stable 3D bifunctional electrode for
密度运行 100 h 后,电流密度仅下降了 11%。本工 full water splitting[J]. Angewandte Chemie International Edition,
2015, 127(32): 9483-9487.
作为设计和合成用于碱性全解水的双功能硒化纳米 [18] CHEN T, LI S Z, WEN J, et al. Rational construction of hollow
催化性剂提供了普适性策略和实验支撑。 core-branch CoSe 2 nanoarrays for high-performance asymmetric
supercapacitor and efficient oxygen evolution [J]. Small, 2018, 14(5):
参考文献: 1700979-1700986.
[19] CHEN B W (陈保卫), GAO W J (高文君), DU S M (杜庶铭), et al.
[1] JAIN I P, LAL C, JAIN A. Hydrogen storage in Mg: A most Synthesis and catalytic performance comparison of rod-shaped
promising material[J]. International Journal of Hydrogen Energy, FeS 2/NiS 2 and FeP/Ni 2P[J]. Fine Chemicals (精细化工), 2020,
2010, 35(10): 5133-5144. 37(12): 2467-2473.
[2] BAO W W, XIAO L, ZHANG J J, et al. Interface engineering of [20] LIU Y, XU H X, LIU H B, et al. Active site identification and
NiV-LDH@FeOOH heterostructures as high-performance electro- evaluation criteria of in situ grown CoTe and NiTe nanoarrays for
catalyst for oxygen evolution reaction in alkaline conditions[J]. hydrogen evolution and oxygen evolution reactions[J]. Small
Chemical Communications, 2020, 56(65): 9360-9363. Methods, 2019, 3(5): 1900113-1900123.
[3] MIDILLI A, KUCUK H, TOPAL M E, et al. A comprehensive [21] LIU T T, LIU Q, ASIRI A M, et al. Amorphous CoSe film behaves as
review on hydrogen production from coal gasification: Challenges an active and stable full water splitting electrocatalyst under strongly
and opportunities[J]. International Journal of Hydrogen Energy, alkaline conditions[J]. Chemical Communications, 2015, 51(93):
2021, 46(50): 25385-25412. 16683-16686.
[4] KUMAR G, SHOBANA S, NAGARAJAN D, et al. Biomass based [22] GUO Y X, YAO Z Y, SHANG C S, et al. Amorphous Co 2B grown on
hydrogen production by dark fermentation-recent trends and CoSe 2 nanosheets as a hybrid catalyst for efficient overall water
opportunities for greener processes[J]. Current Opinion in splitting in alkaline medium[J]. ACS Applied Materials & Interfaces
Biotechnology, 2018, 50: 136-145. A, 2017, 9(45): 39312-39317.
[5] ZOU X Y, WEI X L, BAO W W, et al. Local electronic structure [23] WANG Y, YANG Y T, WANG X, et al. Electro-synthesized
modulation of NiVP@NiFeV-LDH electrode for high-efficiency Co(OH) 2@CoSe with Co—OH active site for overall water splitting
oxygen evolution reaction[J]. International Journal of Hydrogen electrocatalysis[J]. Nanoscale, 2020, 2: 792-797.
Energy, 2021, 46(64): 32385-32393. [24] WEI G J, DU K, ZHAO X X, et al. Cable-like carbon nanotubes
[6] ZHANG J, WANG T, POHL D, et al. Interface engineering of decorated metal-organic framework derived ultrathin CoSe 2/CNTs
MoS 2/Ni 3S 2 heterostructures for highly enhanced electrochemical nanosheets for electrocatalytic overall water splitting[J]. Chinese
overall water splitting activity[J]. Angewandte Chemie International Chemical Letters, 2020, 31(10): 2641-2644.