Page 226 - 《精细化工》2022年第5期
P. 226

·1080·                            精细化工   FINE CHEMICALS                                 第 39 卷

            成 O/W 型乳状液,降低稠油黏度,较低的界面张力                          [15]  LI Q (李崎). Preparation  of  polyethyleneimine based polymer and
            以及聚合物在乳状液界面上的吸附提高了乳状液的                                 their research  on the  emulsifying properties of  extra-heavy  oil[D].
                                                                   Kaifeng: Henan University (河南大学), 2019.
            稳定性。                                               [16]  LI  Q, WANG X D,  LI  Q Y,  et al. New amphiphilic polymer with
                                                                   emulsifying capability for extra heavy crude oil[J]. Industrial  &
            参考文献:                                                  Engineering Chemistry Research, 2018, 57: 17013-17023.
            [1]   SHU Q L (束青林), WANG S H (王顺华), YANG Y L (杨元亮), et   [17]  SOARES  L M C  F, AMPARO S Z,  RIBEIRO H,  et al. Aqueous
                 al. Key technology of high-speed and high-efficiency development of   suspensions of carbon black with ethylenediamine and polyacrylamide-
                 thin-shallow super-heavy oil reservoir in Chunfeng  Oilfield[J].   midofied surfaces: Applications for chemically enhanced oil recovery
                 Petroleum Geology and Recovery Efficiency (油气地质与采收率),   [J]. Carbon, 2016, 109: 290-299.
                 2019, 26(3): 9-18.                            [18]  LIU G B (刘国宝). Preparation and evaluation of temperature-
            [2]   CHEN Y X (陈玉祥), WANG X (王霞), PAN C S (潘成松), et al.   resistant blocking system for steam channel[D]. Daqing:  Northeast
                 Study on the application of  surfactants in  viscosity reduction of   Petroleum University (东北石油大学), 2020.
                 viscous crude oil[J]. Journal of Chongqing University of Science and   [19]  WANG D M (王冬梅), CAO J L (曹金丽), ZHANG Y (张怡), et al.
                 Technology (重庆科技学院学报), 2009, 11(1): 48-51.        The structure characterization of polyethylenimine  via FTIR[J].
            [3]   HU M (胡敏), DONG  G J (董国军), SHI X F (史学峰),  et al.   Spectroscopy and  Spectral Analysis  (光谱学与光谱分析), 2016,
                 Properties  of emulsification and  viscosity reducing of amphiphilic   36(10): 199-200.
                 polymer[J].  Applied Chemical Industry (应用化工), 2010, 39(9):   [20]  JIANG H L, KWON J T, KIM Y  K,  et al. Galactosylated
                 1289-1292.                                        chitosan-graft-polyethylenimine as a  gene carrier for hepatocyte
            [4]   WANG Z J (王志坚), SUN L Z (孙立柱), WANG J (王静). Research   targeting[J]. Gene Therapy, 2007, 14: 1389-1398.
                 and application of microbial huff and puff technology in extra heavy   [21]  SUN Q W (孙齐伟), ZHANG C H (张翠红), GAO Y (高燕), et al.
                 oil reservoir in Chunfeng Oilfield[J]. Shandong Chemical Industry   Study on preparation and properties of P(AM-AMPS) microgels by
                 (山东化工), 2018, 47(22): 98-101.                     dispersion copolymerization[J]. Journal of Functional Materials (功
            [5]   ZHOU  L B (周林碧), QIN B (秦冰), LI W (李伟),  et al.   能材料), 2012, 43(9): 1151-1154.
                 Development and application of  heavy oil viscosity reduction   [22]  ZHANG X Z (张夏真), ZHANG X H (张夏虹), TANG S (唐诗), et
                 technology at home and abroad[J]. Oilfield Chemistry (油田化学),   al. Synthesis of AM/AMPS/AA copolymer and its application in
                 2020, 37(3): 557-563.                             self-compacting concrete[J]. Construction Technology (施工技术),
            [6]  XIONG Y(熊钰), LENG A R (冷傲然), SUN Y H (孙业恒), et al.   2016, 55(S2): 538-540.
                 Dispersion mechanism of viscosity reducer and evaluation  of   [23]  ZHAO W X (赵文学), HAN K J (韩克江), ZENG H (曾鹤), et al.
                 displacement experiment for cold  production  of heavy oil[J].   Mechanisms and research progress of heavy oil viscosity reduction
                 Xinjiang Petroleum Geology (新疆石油地质), 2021, 42(1): 68-75.     methods[J]. Contemporary Chemical Industry (当代化工), 2015,
            [7]   LUO S C (罗慎超), GUO J X (郭继香),  YU Z J (余子敬),  et al.   44(6): 1365-1367.
                 Study on the temperature-resistant and salt-tolerant surfactant BHJ-2   [24]  MIN J L (闵敬丽). Study on synthesis and properities of temperature
                 for EOR[J]. Fine Chemicals (精细化工), 2016, 33(1): 98-104.     resistance and salt tolerance polyacrylamide copolymer[D]. Jinan:
            [8]   LI Q (李崎), WANG X D (王晓冬), LI Q Y (李秋叶), et al. Research   Shandong University (山东大学), 2017.
                 progress and development trend for viscosity reduction technology of   [25]  KURENKOV V F, ZAITSEVA O A,  SOLOVEV D A.  Kinetics of
                 heavy crude oil[J]. Chemical Research (化学研究), 2018, 29(5):   radical copolymerization of acrylamide with magnesium 2-acrylamido-
                 441-454.                                          2-methyl propane sulfonate in aqueous solutions[J]. Russian Journal
            [9]   XING Y (邢钰), WU Y  H (吴艳华), GUO J X (郭继香),  et al.   of Applied Chemistry, 2001, 74(3): 505-509.
                 Microscopic properties of viscous key components in heavy crude   [26]  ZHOU H, CAO  X L, GUO  L L,  et al. Studies on the interfacial
                 oils[J]. Science  Technology and Engineering  (科学技术与工程),   dilational rheology of films containing heavy oil fractions as related
                 2020, 20(5): 1833-1838.
            [10]  MEI S N (梅苏宁), YANG J M (杨建明), ZHANG Q (张前), et al.   to emulsifying properties[J]. Colloids and Surfaces A, 2018, 541:
                 Research progress  on application  of polyethyleneimine in the new   117-127.
                 field[J]. New  Chemical Materials (化工新型材料), 2017, 45(10):   [27]  DUY N, VITTORIA B. Emulsification  of  heavy oil in aqueous
                 30-32.                                            solutions of  poly(vinyl alcohol): A method  for  reducing apparent
            [11]  CHEN M G (陈明贵), ZHOU  Z (周智), LYU X (吕行),  et al.   viscosity of production  fluids[J]. Energy & Fuels, 2013, 27(4):
                 Research on feasibility of amphiphilic polymer for chemical flooding   1736-1747.
                 in heterogeneous  heavy oil reservoir[J]. Petroleum Geology and   [28]  XU X H (徐晓慧), ZHANG J (张健), CUI  Y X (崔盈贤),  et al.
                 Recovery Efficiency (油气地质与采收率), 2015, 22(6): 116-120.     Emulsifying and viscosity reducing capacity of amphiphilic polymer
            [12]  ZHOU J Z (周继柱), SHI W L (时武龙), FU Z H (付增华), et al.   for crude oil recovery[J]. Oilfield Chemistry (油田化学), 2016,
                 Preparation and properties research of viscosity reducing of salt and   33(3): 456-461.
                 temperature resistance amphiphilic polymer[J].  Applied Chemical   [29]  WANG X D (王旭东), ZHANG J (张健), SHI L T (施雷庭), et al.
                 Industry (应用化工), 2014, 43(10): 1843-1846.         Study on viscosity reduction mechanism and oil displacement effect
            [13]  LI J (李娟). Synthesis and performance of water-soluble polymer for   of heavy oil activator[J]. Special Oil and Gas Reservoirs (特种油气
                 heavy oil viscosity reduction[D]. Jinan:Shandong University (山东大  藏), 2020, 27(6): 133-138.
                 学), 2019.                                     [30]  MA C (马超), ZHANG M  H (张明华), ZHANG X (张雄),  et al.
            [14]  WU X (吴旭). Synthesis and aggregation  properties of sulfonic   Synthesis and viscosity reduction properties of amphiphilic polymer
                 amphiphilic statistical polymers[D].  Harbin: Harbin Engineering   heavy oil viscosity reducer[J]. Polymer Materials Science  and
                 University (哈尔滨工程大学), 2010.                       Engineering (高分子材料科学与工程), 2020, 36(4): 61-66.
   221   222   223   224   225   226   227   228   229   230   231