Page 20 - 《精细化工》2022年第7期
P. 20
·1306· 精细化工 FINE CHEMICALS 第 39 卷
563-572. liquid chromatography[J]. Journal of Separation Science, 2016,
[50] ZHAO R, SHI X Y, MA T T, et al. Constructing mesoporous 39(14): 2806-2814.
adsorption channels and MOF-polymer interfaces in electrospun [66] DAI H, YUAN X Z, JIANG L B, et al. Recent advances on ZIF-8
composite fibers for effective removal of emerging organic composites for adsorption and photocatalytic wastewater pollutant
contaminants[J]. ACS Applied Materials & Interfaces, 2021, 13(1): removal: Fabrication, applications and perspective[J]. Coordination
755-764. Chemistry Reviews, 2021, 441: 213985.
[51] TANG H M, LI W Y, JIANG H S, et al. ZIF-8-derived hollow carbon [67] JIAN M P, LIU B, ZHANG G S, et al. Adsorptive removal of arsenic
for efficient adsorption of antibiotics[J]. Nanomaterials, 2019, 9(1): from aqueous solution by zeolitic imidazolate framework-8 (ZIF-8)
117. nanoparticles[J]. Colloids and Surfaces A: Physicochemical and
[52] LI Q Q, DENG W J, LI C N, et al. High-flux oil/water separation Engineering Aspects, 2015, 465: 67-76.
with interfacial capillary effect in switchable superwetting [68] JUNG B K, JUN J W, HASAN Z, et al. Adsorptive removal of
Cu(OH) 2@ZIF-8 nanowire membranes[J]. ACS Applied Materials & p-arsanilic acid from water using mesoporous zeolitic imidazolate
Interfaces, 2018, 10(46): 40265-40273. framework-8[J]. Chemical Engineering Journal, 2015, 267: 9-15.
[53] SHAHMIRZAEE M, HEMMATI-SARAPARDEH A, HUSEIN M [69] MIN X, YANG W T, HUI Y F, et al. Fe 3O 4@ZIF-8: A magnetic
2+
M, et al. Development of a powerful zeolitic imidazolate framework nanocomposite for highly efficient UO 2 adsorption and selective
2+
3+
(ZIF-8)/carbon fiber nanocomposite for separation of hydrocarbons UO 2 /Ln separation[J]. Chemical Communications, 2017, 53(30):
and crude oil from wastewater[J]. Microporous and Mesoporous 4199-4202.
Materials, 2020, 307: 110463. [70] LIU L, YANG W, GU D, et al. In situ preparation of chitosan/ZIF-8
[54] SANN E E, PAN Y, GAO Z F, et al. Highly hydrophobic ZIF-8 composite beads for highly efficient removal of U(Ⅵ)[J]. Front
particles and application for oil-water separation[J]. Separation and Chem, 2019, 7: 607.
Purification Technology, 2018, 206: 186-191. [71] WANG C H, ZHENG T, LUO R, et al. In situ growth of ZIF-8 on
[55] WU M M, LIU W M, MU P, et al. Sacrifice template strategy to the PAN fibrous filters for highly efficient U(Ⅵ) removal[J]. ACS
fabrication of a self-cleaning nanofibrous membrane for efficient Applied Materials & Interfaces, 2018, 10(28): 24164-24171.
crude oil-in-water emulsion separation with high flux[J]. ACS [72] CHAO S, LI X, LI Y Z, et al. Preparation of polydopamine-modified
Applied Materials & Interfaces, 2020, 12(47): 53484-53493. zeolitic imidazolate framework-8 functionalized electrospun fibers
[56] YE H C, CHEN D Y, LI N J, et al. Durable and robust self-healing for efficient removal of tetracycline[J]. Journal of Colloid and
superhydrophobic co-PDMS@ZIF-8-coated MWCNT films for Interface Science, 2019, 552: 506-516.
extremely efficient emulsion separation[J]. ACS Applied Materials & [73] SUN S W, YANG Z H, CAO J, et al. Copper-doped ZIF-8 with high
Interfaces, 2019, 11(41): 38313-38320. adsorption performance for removal of tetracycline from aqueous
[57] MA W J, LI Y S, ZHANG M J, et al. Biomimetic durable solution[J]. Journal of Solid State Chemistry, 2020, 285: 121219.
multifunctional self-cleaning nanofibrous membrane with outstanding [74] SARKER M, AHMED I, JHUNG S H. Adsorptive removal of
oil/water separation, photodegradation of organic contaminants, and herbicides from water over nitrogen-doped carbon obtained from
antibacterial performances[J]. ACS Applied Materials & Interfaces, ionic liquid@ZIF-8[J]. Chemical Engineering Journal, 2017, 323:
2020, 12(31): 34999-35010. 203-211.
[58] YU C L, YU J C, HE H B, et al. Progress in sonochemical [75] LIU Y, PANG H W, WANG X X, et al. Zeolitic imidazolate
fabrication of nanostructured photocatalysts[J]. Rare Metals, 2016, framework-based nanomaterials for the capture of heavy metal ions
35(3): 211-222. and radionuclides: A review[J]. Chemical Engineering Journal, 2021,
[59] LIU Y, CHENG H, CHENG M, et al. The application of zeolitic 406: 127139.
imidazolate frameworks (ZIFs) and their derivatives based materials [76] JIANG J Q, YANG C X, YAN X P. Zeolitic imidazolate framework-8
for photocatalytic hydrogen evolution and pollutants treatment[J]. for fast adsorption and removal of benzotriazoles from aqueous
Chemical Engineering Journal, 2021, 417: 127914. solution[J]. ACS Applied Materials & Interfaces, 2013, 5(19): 9837-
[60] LIU J X, LI R, WANG Y F, et al. The active roles of ZIF-8 on the 9842.
enhanced visible photocatalytic activity of Ag/AgCl: Generation of [77] CAVKA J H, JAKOBSEN S, OLSBYE U, et al. A new zirconium
superoxide radical and adsorption[J]. Journal of Alloys and inorganic building brick forming metal organic frameworks with
Compounds, 2017, 693: 543-549. exceptional stability[J]. Journal of the American Chemical Society,
[61] FAN G D, ZHENG X M, LUO J, et al. Rapid synthesis of 2008, 130(42): 13850-13851.
Ag/AgCl@ZIF-8 as a highly efficient photocatalyst for degradation [78] PARK K S, NI Z, CÔTÉ A P, et al. Exceptional chemical and
of acetaminophen under visible light[J]. Chemical Engineering Journal, thermal stability of zeolitic imidazolate frameworks[J]. Proceedings
2018, 351: 782-790. of the National Academy of Sciences, 2006, 103(27): 10186.
[62] JING Y Q, LEI Q, XIA C, et al. Synthesis of Ag and AgCl co-doped [79] LOW J J, BENIN A I, JAKUBCZAK P, et al. Virtual high
ZIF-8 hybrid photocatalysts with enhanced photocatalytic activity throughput screening confirmed experimentally: Porous coordination
through a synergistic effect[J]. RSC Advances, 2020, 10(2): 698-704. polymer hydration[J]. Journal of the American Chemical Society,
[63] FAN G D, LUO J, GUO L, et al. Doping Ag/AgCl in zeolitic 2009, 131(43): 15834-15842.
imidazolate framework-8 (ZIF-8) to enhance the performance of [80] PAN Y C, LIU Y Y, ZENG G F, et al. Rapid synthesis of zeolitic
photodegradation of methylene blue[J]. Chemosphere, 2018, 209: 44- imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous
52. system[J]. Chemical Communications, 2011, 47(7): 2071-2073.
[64] DU T, WANG J, ZHANG T S, et al. An integrating platform of [81] KÜSGENS P, ROSE M, SENKOVSKA I, et al. Characterization of
ratiometric fluorescent adsorbent for unconventional real-time metal-organic frameworks by water adsorption[J]. Microporous and
removing and monitoring of copper ions[J]. ACS Applied Materials Mesoporous Materials, 2009, 120(3): 325-330.
& Interfaces, 2020, 12(11): 13189-13199. [82] JIN H, LI Y S, LIU X L, et al. Recovery of HMF from aqueous
[65] LIANG X T, LIU S Q, ZHU R, et al. Highly sensitive analysis of solution by zeolitic imidazolate frameworks[J]. Chemical Engineering
polycyclic aromatic hydrocarbons in environmental water with Science, 2015, 124: 170-178.
porous cellulose/zeolitic imidazolate framework-8 composite
microspheres as a novel adsorbent coupled with high-performance (下转第 1319 页)