Page 73 - 《精细化工》2022年第8期
P. 73

第 8 期                      陈密发,等:  纳米材料在提高石油采收率中的研究进展                                   ·1573·


                 纳米材料或纳米技术在提高石油采收率领域的                          [17]  KHORAMIAN R, RAMAZANI S A A, HEKMATZADEH M, et al.
                                                                   Graphene oxide nanosheets for oil recovery[J]. ACS Applied Nano
            应用是挑战与机遇并存,在理论和实践中需深化研
                                                                   Materials, 2019, 2(9): 5730-5742.
            究。随着对纳米材料的认识不断加深,对纳米材料                             [18]  HOU  Y G (侯永刚), LYU S H (吕生华), ZHANG J (张佳), et al.
            修饰方法更加成熟以及多学科的交叉融合,相信                                  Preparation and formation  mechanism of graphene oxide[J]. Fine
                                                                   Chemicals (精细化工), 2019, 36(4): 559-567.
            不久的将来,纳米材料在提高石油采收率领域会扮                             [19]  WANG S L, LIU  N S, SU J,  et al.  Highly stretchable and self-
            演重要的角色。                                                healable supercapacitor with reduced graphene oxide based fiber
                                                                   springs[J]. ACS Nano, 2017, 11(2): 2066-2074.
            参考文献:                                              [20]  KHORAMIAN R, RAMAZANI S A A, HEKMATZADEH M, et al.
                                                                   Graphene oxide nanosheets for oil recovery[J]. ACS Applied Nano
            [1]   DRUETTA P,  RAFFA P, PICCHIONI F. Chemical  enhanced oil   Materials, 2019, 2(9): 5730-5742.
                 recovery and the role of chemical product design[J]. Applied Energy,   [21]  FU L, LIAO K,  TANG  B,  et al. Applications of graphene  and its
                 2019, 252: 113480.                                derivatives in the upstream oil and gas industry: A  systematic
            [2]   RAFFA P, BROEKHUIS A A, PICCHIONI F. Polymeric surfactants   review[J]. Nanomaterials, 2020, 10(6): 1013.
                 for enhanced oil recovery: A review[J]. Journal of Petroleum Science   [22]  ALIABADIAN E, SADEGHI S, REZVANI M A, et al. Application
                 and Engineering, 2016, 145: 723-733.              of graphene oxide nanosheets and HPAM aqueous dispersion for
            [3]   KAMAL M S, HUSSEIN I A, SULTAN A S. Review on surfactant   improving heavy oil recovery: Effect  of localized functionalization
                 flooding: Phase behavior, retention, IFT, and field applications[J].   [J]. Fuel, 2020, 265: 116918.
                 Energy & Fuels, 2017, 31(8): 7701-7720.       [23]  NGUYEN B D, NGO T K, BUI T H, et al. The impact of graphene
            [4]   FOROOZESH J,  KUMAR S. Nanoparticles behaviors in porous   oxide particles on viscosity stabilization for diluted polymer solutions
                 media: Application to enhanced oil recovery[J]. Journal of Molecular   using in enhanced oil recovery at HTHP offshore reservoirs[J]. Advances
                 Liquids, 2020, 316: 113876.                       in Natural Sciences-Nanoscience and Nanotechnology, 2015, 6(1):
            [5]  ZHANG  L  (张力), ZHANG W  D (张卫东), SHA O (沙鸥),  et al.   015012.
                 Research progress  of modified nanoparticles used in enhanced oil   [24]  KARGARZADEH H,  MARIANO  M, HUANG J,  et al. Recent
                 recovery[J].  Petrochemical Technology  (石油化工), 2021, 50(9):   developments on nanocellulose reinforced polymer nanocomposites:
                 967-973.                                          A review[J]. Polymer, 2017, 132: 368-393.
            [6]   NOURAFKAN  E, GARDY J, ASACHI M,  et al. Nanoparticle   [25]  DUAN B (段博), TU H  (涂虎), ZHANG L  N  (张俐娜). Material
                 formation in stable  microemulsions for enhanced oil recovery   research progress of the sustainable polymer-cellulose[J]. Acta
                 application[J]. Industrial & Engineering Chemistry Research, 2019,   Polymerica Sinica (高分子学报), 2020, 51(1): 66-86.
                 58(28): 12664-12677.                          [26]  WEI B, LI Q, JIN F, et al.  The potential of a novel nanofluid in
            [7]   WANI B O, SHOAIB M, SUMAITI A A, et al. Application of green   enhancing oil recovery[J]. Energy & Fuels, 2016, 30(4): 2882-2891.
                 additives for enhanced oil recovery: Cellulosic nanocrystals as fluid   [27]  WEI B, LI H, LI Q, et al. Stabilization of foam lamella using novel
                 diversion agents in carbonate reservoirs[J]. Colloids and Surfaces A:   surface-grafted nanocellulose-based  nanofluids[J]. Langmuir, 2017,
                 Physicochemical and Engineering Aspects, 2020, 589: 124422.   33(21): 5127-5139.
            [8]   SHI F (石芳), WU J C (吴景春), ZHAO B (赵博), et al. Structure and   [28]  KUSANAGI K, MURATA S, GOI Y, et al. Application of cellulose
                 oil displacement performance of Janus microcapsules[J]. Journal of   nanofiber as environment-friendly polymer for oil development[C]//
                 the Chinese Ceramic Society (硅酸盐学报), 2019, 47(11): 1-8.   SPE/IATMI Asia  Pacific Oil & Gas Conference  and Exhibition,
            [9]   YUAN M H (袁美和), MA H (马浩), KE H (柯辉), et al. Synthesis   2015, SPE-176456-MS.
                 and performance  evaluation  of  nano-silica composite viscosity   [29]  WALTHER A, MUELLER A  H E. Janus particles: Synthesis, self-
                 reducer[J]. Fine Chemicals (精细化工), 2021, 38(6): 1250-1256.   assembly, physical properties, and applications[J]. Chemical Reviews,
            [10]  ELSHAWAF M. Investigation of graphene oxide nanoparticles effect   2013, 113(7): 5194-5261.
                 on heavy oil viscosity[C]//SPE Annual Technical Conference and   [30]  WALTHER A,  MUELLER A  H E. Janus  particles[J]. Soft Matter,
                 Exhibition, 2018, SPE-194037-STU.                 2008, 4(4): 663-668.
            [11]  LI Y, WANG  Y, WANG Q,  et al. Achieving the super gas-wetting   [31]  MA A  Y, WANG  G L,  YANG Z  L,  et al. Fabrication of Janus
                 alteration by functionalized nano-silica for improving fluid flowing   graphene oxide hybrid nanosheets by Pickering emulsion template
                 capacity in gas condensate reservoirs[J]. ACS Applied Materials &   for self-healing nanocomposite hydrogels[J]. Chemical  Engineering
                 Interfaces, 2021, 13(9): 10996-11006.             Journal, 2020, 385: 123962.
            [12] PAN  Y  (潘一), LIAO S Z (廖松泽),  YANG S C (杨双春),  et al.   [32]  ZHANG L C, LEI Q, LUO J H, et al. Natural halloysites-based Janus
                 Research on nanomaterials in oilfield for oil recovery enhancement   platelet surfactants for the formation of pickering emulsion and
                 [J]. Materials China (中国材料进展), 2021, 40 (3): 210-217.   enhanced oil recovery[J]. Scientific Reports, 2019, 9(1): 1-8.
            [13]  HU B (胡兵), JIANG B  B (蒋斌波), CHEN J Z  (陈纪忠).   [33]  JIA  H, DAI  J  J, MIAO L C,  et al.  Potential application of novel
                 Manufacture technologies and applications of mono-disperse silicon   amphiphilic Janus-SiO 2 nanoparticles stabilized O/W/O emulsion for
                 dioxide[J]. Chemical Industry and Engineering Progress (化工进展),   enhanced oil recovery[J]. Colloids and Surfaces A-Physicochemical
                 2005, 24(6): 603-606.                             and Engineering Aspects, 2021, 622: 126658.
            [14]  CORREDOR L M, ALIABADIAN E, HUSEIN M, et al. Heavy oil   [34]  LUO  D, WANG F, ZHU J Y,  et al.  Nanofluid of graphene-based
                 recovery by surface  modified silica nanoparticle/HPAM nanofluids   amphiphilic Janus nanosheets for tertiary or enhanced oil recovery:
                 [J]. Fuel, 2019, 252: 622-634.                    High performance at low concentration[J]. Proceedings of the National
            [15]  CAO J, SONG T, WANG X J,  et al. Studies on the rheological   Academy of Sciences, 2016, 113(28): 7711-7716.
                 properties  of amphiphilic nanosilica and a partially  hydrolyzed   [35]  PEREIRA M  L O, MAIA K C  B,  SILVA W C,  et al. Fe 3O 4
                 polyacrylamide hybrid for enhanced oil recovery[J].  Chemical   nanoparticles as surfactant carriers for enhanced oil recovery and scale
                 Engineering Science, 2019, 206: 146-155.          prevention[J]. ACS Applied Nano Materials, 2020, 3(6): 5762-5772.
            [16]  MAURYA N K, MANDAL A. Studies on behavior of suspension of   [36]  GBADAMOSI  A  O, JUNIN R, MANAN M A,  et al. Synergistic
                 silica nanoparticle in aqueous polyacrylamide solution for application   application of aluminium oxide nanoparticles and oilfield polyacrylamide
                 in enhanced oil recovery[J]. Petroleum Science and Technology,   for enhanced oil  recovery[J]. Journal of Petroleum Science and
                 2016, 34(5): 429-436.                             Engineering, 2019, 182: 106345.
   68   69   70   71   72   73   74   75   76   77   78