Page 95 - 《精细化工》2022年第8期
P. 95
第 8 期 温 翯,等: 燃烧后二氧化碳捕集技术与应用进展 ·1595·
63: 1678-1685. adsorption capacity and selectivity by ethylenediamine-modified
[19] LEE Z H, LEE K T, BHATIA S, et al. Post-combustion carbon nano zeolite[J]. Journal of the Taiwan Institute of Chemical
dioxide capture: Evolution towards utilization of nanomaterials[J]. Engineers, 2016, 66: 239-248.
Renewable and Sustainable Energy Reviews, 2012, 16(5): 2599- [39] SHEN Z F, LIU C L, YIN C C, et al. Facile large-scale synthesis of
2609. macroscopic 3D porous graphene-like carbon nanosheets architecture
[20] GIBBINS J R, CRANE R I. Scope for reductions in the cost of CO 2 for efficient CO 2 adsorption[J]. Carbon, 2019, 145: 751-756.
capture using flue gas scrubbing with amine solvents [J]. Proc Instn [40] SOHAIL A, ANITA R, SUZANA Y. Development of
Mech Engrs, Part A: J Power Energy, 2004, 218: 231-239. polyethylenimine-functionalized mesoporous Si-MCM-41 for CO 2
[21] SHAW D. Cansolv CO 2 capture: The value of integration [J]. Energy adsorption[J]. Fuel Processing Technology, 2017, 167: 622-630.
Procedia, 2009, 1: 237-246. [41] GUNATHILAKE C A, RANATHUNGE G, DASSANAYAKE R S,
[22] KNUDSEN J N, ANDERSEN J, JENSEN J N, et al. Evaluation of et al. Emerging investigator series: Synthesis of magnesium oxide
process upgrades and novel solvents for the post combustion CO 2 nanoparticles fabricated on a graphene oxide nanocomposite for CO 2
capture process in pilot-scale[J]. Energy Procedia, 2011, 4: 1558- sequestration at elevated temperatures[J]. Environmental Science:
1565. Nano, 2020, 7(4): 1225-1239.
[23] COUSINS A, COTTRELL A, LAWSON A, et al. Model verification [42] NELSON T O, COLEMAN L, GREEN D A, et al. The dry carbonate
and evaluation of the rich-split process modification at an process: Carbon dioxide recovery from power plant flue gas[J].
Australian-based post combustion CO 2 capture pilot plant[J]. Energy Procedia, 2009, 1(1): 1305-1311.
Greenhouse Gases-Science and Technology, 2012, 2(5): 329-345. [43] YI C K, JO S H, SEO Y, et al. Continuous operation of the
[24] ARTANTO Y, JANSEN J, PEARSON P, et al. Performance of MEA potassium-based dry sorbent CO 2 capture process with two
and amine-blends in the CSIRO PCC pilot plant at Loy Yang Power fluidized-bed reactors[J]. International Journal of Greenhouse Gas
in Australia[J]. Fuel, 2012, 101: 264-275. Control, 2007, 1(1): 31-36.
[25] DUAN Y Y (段玉燕), LUO H Z (罗海中), LIN H Z (林海周), et al. [44] PARK Y C, JO S H, CHONG K R, et al. Demonstration of pilot scale
A brief discussion on the experience of CCUS demonstration projects carbon dioxide capture system using dry regenerable sorbents to the
at home and abroad[J]. Shandong Chemical Industry (山东化工), real coal-fired power plant in Korea[J]. Energy Procedia, 2011, 4:
2018, 47(20): 173-174, 178. 1508-1512.
[26] MUMFORD K A, WU Y, SMITH K H, et al. Review of solvent [45] PARK Y C, JO S H, KYUNG D H. Test operation results of the 10
based carbon-dioxide capture technologies[J]. Frontiers of Chemical MWe-scale dry-sorbent CO 2 capture process integrated with a real
Science and Engineering, 2015, 9: 125-141. coal-fired power plant in Korea[J]. Energy Procedia, 2014, 63:
[27] ENDO T, KAJIYA Y, NAGAYASU H, et al. Current status of MHI 2261-2265.
CO 2 capture plant technology, large scale demonstration project and [46] ZHANG W B, LIU H, SUN C G, et al. Performance of
road map to commercialization for coal fired flue gas application[J]. polyethyleneimine-silica adsorbent for post-combustion CO 2 capture
Energy Procedia, 2011, 4: 1513-1519. in a bubbling fluidized bed[J]. Chemical Engineering Journal, 2014,
[28] TOLLEFSON J. Low-cost carbon-capture project sparks interest[J]. 251: 293-303.
Nature, 2011, 469(7330): 276-277. [47] DRAGE T C, SNAPE C E, STEVENS L A, et al. Materials
[29] LU S J (陆诗建), ZHAO D Y(赵东亚), ZHU Q M(朱全民), et al. challenges for the development of solid sorbents for post-combustion
Energy analysis and energy saving method for a 100 t/d CO 2 capture carbon capture[J]. Journal of Materials Chemistry, 2012, 22(7):
device in Shengli power plant[J]. Natural Gas Chemical Industry(天 2815-2823.
然气化工:C1 化学与化工), 2019, 44(5): 96-101, 106. [48] AROON M A, ISMAIL A F, MATSUURA T, et al. Performance
[30] REDDY S, SCHERFFIUS J R, YONKOSKI J, et al. Initial results studies of mixed matrix membranes for gas separation: A review[J].
from Fluor's CO 2 capture demonstration plant using Econamine FG Separation and Purification Technology, 2010, 75: 229-242.
SM
Plus technology at E. ON Kraftwerke's Wilhelmshaven power [49] CHEN W B, ZHANG Z G, YANG C C, et al. PIM-based
plant[J]. Energy Procedia, 2013, 37: 6216-6225. mixed-matrix membranes containing MOF-801/ionic liquid
[31] LIU Z Z(刘珍珍). Research on mixed absorbent and optimiaztion of nanocomposites for enhanced CO 2 separation performance[J].
CO 2 capture process[D]. Hangzhou: Zhejiang University (浙江大学), Journal of Membrane Science, 2021, 9(21): 12782-12796.
2021. [50] ZHANG Y H, TONG Y P, LI X Y, et al. Pebax mixed-matrix
[32] ZHOU Z Y(周忠昀). Study on modification of high-temperature membrane with highly dispersed ZIF-8@CNTs to enhance CO 2/N 2
lithium-based adsorbents and adsorption properties of low separation[J]. ACS Omega, 2021, 6(29): 18566-18575.
concentration carbon dioxide[D]. Beijing: China University of [51] WHITE L S, WEI X T, PANDE S, et al. Extended flue gas trials with
Mining and Technology (中国矿业大学), 2018. a membrane-based pilot plant at a one-ton-per-day carbon capture
[33] XU Y H(徐永辉), XIAO B H(肖宝华), FENG Y Y(冯艳艳), et al. rate[J]. Journal of Membrane Science, 2015, 496: 48-57.
Research progress of carbon dioxide capture materials[J]. Fine [52] POHLMANN J, BRAM M, WILKNER K, et al. Pilot scale
Chemicals (精细化工), 2021, 38(8): 1513-1521. separation of CO 2 from power plant flue gases by membrane
[34] ANYANWU J T, WANG Y R, YANG R T. SBA-15 functionalized technology[J]. International Journal of Greenhouse Gas Control,
with amines in the presence of water: Applications to CO 2 capture 2016, 53: 56-64.
and natural gas desulfurization[J]. Industrial & Engineering [53] HE X Z, HAGG M B. Energy efficient process for CO 2 capture from
Chemistry Research, 2021, 60(17): 6277-6286. flue gas with novel fixed-site-carrier membranes[J]. Energy Procedia,
[35] CAO Y, ZHAO Y X, LV Z J, et al. Preparation and enhanced CO 2 2014, 63: 174-185.
adsorption capacity of UiO-66/graphene oxide composites[J]. Journal [54] SANDRU M, KIM T J, CAPALA W, et al. Pilot scale testing of
of Industrial and Engineering Chemistry, 2015, 27: 102-107. polymeric membranes for CO 2 capture from coal fired power
[36] GAIKWAD S, KIM Y, GAIKWAD R, et al. Enhanced CO 2 capture plants[J]. Energy Procedia, 2013, 37: 6473-6480.
capacity of amine-functionalized MOF-177 metal organic [55] WU H Y, LI Q H, SHENG M L, et al. Membrane technology for CO 2
framework[J]. Journal of Environmental Chemical Engineering, capture: From pilot-scale investigation of two-stage plant to actual
2021, 9(4): 105523-105530. system design[J]. Journal of Membrane Science, 2021, 624: 119137.
[37] MA L, QIN C L, PI S, et al. Fabrication of efficient and stable [56] ROUSSANALY S, ANANTHARAMAN R, LINDQVIST K, et al.
Li 4SiO 4-based sorbent pellets via extrusion-spheronization for cyclic Membrane properties required for post-combustion CO 2 capture at
CO 2 capture[J]. Chemical Engineering Journal, 2020, 379: coal-fired power plants[J]. Journal of Membrane Science, 2016, 511:
122385-122396. 250-264.
[38] PHAM T H, LEE B K, KIM J. Novel improvement of CO 2 (下转第 1632 页)