Page 95 - 《精细化工》2022年第8期
P. 95

第 8 期                        温   翯,等:  燃烧后二氧化碳捕集技术与应用进展                                 ·1595·


                 63: 1678-1685.                                    adsorption capacity and selectivity by ethylenediamine-modified
            [19]  LEE Z  H, LEE K T, BHATIA S,  et al. Post-combustion carbon   nano zeolite[J]. Journal of the Taiwan Institute of  Chemical
                 dioxide capture: Evolution  towards utilization of nanomaterials[J].   Engineers, 2016, 66: 239-248.
                 Renewable and Sustainable Energy Reviews, 2012, 16(5): 2599-   [39]  SHEN Z F, LIU C L, YIN C C, et al. Facile large-scale synthesis of
                 2609.                                             macroscopic 3D porous graphene-like carbon nanosheets architecture
            [20]  GIBBINS J R, CRANE R I. Scope for reductions in the cost of CO 2   for efficient CO 2 adsorption[J]. Carbon, 2019, 145: 751-756.
                 capture using flue gas scrubbing with amine solvents [J]. Proc Instn   [40]  SOHAIL A, ANITA R, SUZANA Y.  Development of
                 Mech Engrs, Part A: J Power Energy, 2004, 218: 231-239.     polyethylenimine-functionalized  mesoporous Si-MCM-41 for CO 2
            [21]  SHAW D. Cansolv CO 2 capture: The value of integration [J]. Energy   adsorption[J]. Fuel Processing Technology, 2017, 167: 622-630.
                 Procedia, 2009, 1: 237-246.                   [41]  GUNATHILAKE C A, RANATHUNGE G, DASSANAYAKE R S,
            [22]  KNUDSEN J N, ANDERSEN J, JENSEN J N, et al. Evaluation of   et al. Emerging investigator series: Synthesis of magnesium oxide
                 process upgrades and novel solvents for the post combustion CO 2   nanoparticles fabricated on a graphene oxide nanocomposite for CO 2
                 capture process in  pilot-scale[J]. Energy Procedia, 2011, 4: 1558-   sequestration at elevated temperatures[J]. Environmental Science:
                 1565.                                             Nano, 2020, 7(4): 1225-1239.
            [23]  COUSINS A, COTTRELL A, LAWSON A, et al. Model verification   [42]  NELSON T O, COLEMAN L, GREEN D A, et al. The dry carbonate
                 and evaluation of the rich-split  process modification at an   process: Carbon dioxide recovery from power plant flue gas[J].
                 Australian-based post combustion CO 2 capture pilot plant[J].   Energy Procedia, 2009, 1(1): 1305-1311.
                 Greenhouse Gases-Science and Technology, 2012, 2(5): 329-345.     [43]  YI C  K, JO S H, SEO Y,  et al.  Continuous operation of the
            [24]  ARTANTO Y, JANSEN J, PEARSON P, et al. Performance of MEA   potassium-based dry sorbent CO 2 capture process with two
                 and amine-blends in the CSIRO PCC pilot plant at Loy Yang Power   fluidized-bed reactors[J]. International Journal of Greenhouse Gas
                 in Australia[J]. Fuel, 2012, 101: 264-275.        Control, 2007, 1(1): 31-36.
            [25]  DUAN Y Y (段玉燕), LUO H Z (罗海中), LIN H Z (林海周), et al.   [44]  PARK Y C, JO S H, CHONG K R, et al. Demonstration of pilot scale
                 A brief discussion on the experience of CCUS demonstration projects   carbon dioxide capture system using dry regenerable sorbents to the
                 at home and abroad[J]. Shandong Chemical Industry (山东化工),   real coal-fired power plant in Korea[J]. Energy Procedia, 2011, 4:
                 2018, 47(20): 173-174, 178.                       1508-1512.
            [26]  MUMFORD K  A, WU  Y,  SMITH K H,  et al. Review of solvent   [45]  PARK Y C, JO S H, KYUNG D H. Test operation results of the 10
                 based carbon-dioxide capture technologies[J]. Frontiers of Chemical   MWe-scale dry-sorbent CO 2 capture process integrated with a real
                 Science and Engineering, 2015, 9: 125-141.        coal-fired  power  plant in Korea[J]. Energy Procedia, 2014, 63:
            [27]  ENDO T, KAJIYA Y, NAGAYASU H, et al. Current status of MHI   2261-2265.
                 CO 2 capture plant technology, large scale demonstration project and   [46]  ZHANG W B,  LIU H, SUN  C G,  et al. Performance of
                 road map to commercialization for coal fired flue gas application[J].   polyethyleneimine-silica adsorbent for post-combustion CO 2 capture
                 Energy Procedia, 2011, 4: 1513-1519.              in a bubbling fluidized bed[J]. Chemical Engineering Journal, 2014,
            [28]  TOLLEFSON J. Low-cost carbon-capture project sparks interest[J].   251: 293-303.
                 Nature, 2011, 469(7330): 276-277.             [47]  DRAGE T  C, SNAPE C E, STEVENS L  A,  et al. Materials
            [29]  LU S J (陆诗建), ZHAO D Y(赵东亚), ZHU Q M(朱全民), et al.   challenges for the development of solid sorbents for post-combustion
                 Energy analysis and energy saving method for a 100 t/d CO 2 capture   carbon capture[J]. Journal of Materials Chemistry, 2012, 22(7):
                 device in Shengli power plant[J]. Natural Gas Chemical Industry(天  2815-2823.
                 然气化工:C1 化学与化工), 2019, 44(5): 96-101, 106.     [48]  AROON M A, ISMAIL  A F, MATSUURA T,  et al. Performance
            [30]  REDDY S, SCHERFFIUS J R, YONKOSKI J, et al. Initial results   studies of mixed matrix membranes for gas separation: A review[J].
                 from Fluor's CO 2 capture demonstration plant using Econamine FG   Separation and Purification Technology, 2010, 75: 229-242.
                   SM
                 Plus  technology at  E. ON Kraftwerke's Wilhelmshaven power   [49]  CHEN  W B, ZHANG Z G,  YANG  C  C,  et al. PIM-based
                 plant[J]. Energy Procedia, 2013, 37: 6216-6225.     mixed-matrix  membranes  containing  MOF-801/ionic  liquid
            [31]  LIU Z Z(刘珍珍). Research on mixed absorbent and optimiaztion of   nanocomposites for enhanced CO 2 separation performance[J].
                 CO 2 capture process[D]. Hangzhou: Zhejiang University (浙江大学),   Journal of Membrane Science, 2021, 9(21): 12782-12796.
                 2021.                                         [50]  ZHANG Y H, TONG  Y P,  LI X  Y,  et al. Pebax  mixed-matrix
            [32]  ZHOU Z  Y(周忠昀). Study on modification of high-temperature   membrane with highly dispersed ZIF-8@CNTs to enhance CO 2/N 2
                 lithium-based adsorbents and adsorption  properties of low   separation[J]. ACS Omega, 2021, 6(29): 18566-18575.
                 concentration carbon dioxide[D]. Beijing: China University of   [51]  WHITE L S, WEI X T, PANDE S, et al. Extended flue gas trials with
                 Mining and Technology (中国矿业大学), 2018.             a  membrane-based pilot plant at a one-ton-per-day carbon capture
            [33]  XU Y H(徐永辉), XIAO B H(肖宝华), FENG Y Y(冯艳艳), et al.   rate[J]. Journal of Membrane Science, 2015, 496: 48-57.
                 Research progress of carbon dioxide capture materials[J]. Fine   [52]  POHLMANN J,  BRAM M, WILKNER K,  et al. Pilot scale
                 Chemicals (精细化工), 2021, 38(8): 1513-1521.         separation of CO 2 from power plant flue gases by  membrane
            [34]  ANYANWU J T, WANG Y R, YANG R T. SBA-15 functionalized   technology[J]. International Journal  of Greenhouse Gas Control,
                 with amines in the presence of water: Applications to CO 2 capture   2016, 53: 56-64.
                 and natural gas desulfurization[J]. Industrial &  Engineering   [53]  HE X Z, HAGG M B. Energy efficient process for CO 2 capture from
                 Chemistry Research, 2021, 60(17): 6277-6286.      flue gas with novel fixed-site-carrier membranes[J]. Energy Procedia,
            [35]  CAO Y, ZHAO Y X, LV Z J, et al. Preparation and enhanced CO 2   2014, 63: 174-185.
                 adsorption capacity of UiO-66/graphene oxide composites[J]. Journal   [54]  SANDRU M, KIM T J, CAPALA W,  et al. Pilot scale testing  of
                 of Industrial and Engineering Chemistry, 2015, 27: 102-107.     polymeric  membranes for CO 2 capture from  coal fired power
            [36]  GAIKWAD S, KIM Y, GAIKWAD R, et al. Enhanced CO 2 capture   plants[J]. Energy Procedia, 2013, 37: 6473-6480.
                 capacity of amine-functionalized MOF-177 metal organic   [55]  WU H Y, LI Q H, SHENG M L, et al. Membrane technology for CO 2
                 framework[J]. Journal of Environmental Chemical Engineering,   capture: From pilot-scale investigation of two-stage plant to actual
                 2021, 9(4): 105523-105530.                        system design[J]. Journal of Membrane Science, 2021, 624: 119137.
            [37]  MA L, QIN C L,  PI S,  et al. Fabrication of efficient and stable   [56]  ROUSSANALY S, ANANTHARAMAN R, LINDQVIST K,  et al.
                 Li 4SiO 4-based sorbent pellets via extrusion-spheronization for cyclic   Membrane properties required  for  post-combustion CO 2 capture  at
                 CO 2 capture[J]. Chemical Engineering Journal, 2020, 379:   coal-fired power plants[J]. Journal of Membrane Science, 2016, 511:
                 122385-122396.                                    250-264.
            [38]  PHAM T H, LEE B  K,  KIM J.  Novel improvement of CO 2                     (下转第 1632 页)
   90   91   92   93   94   95   96   97   98   99   100