Page 133 - 《精细化工》2023年第12期
P. 133
第 12 期 许 婧,等: CNCs 增强相分离法构建 PVDF/PDMS 超疏水表面 ·2675·
防水防污、油水分离、自清洁等领域具有广阔的应 [19] XUE C H, LI Y R, HOU J L, et al. Self-roughened superhydrophobic
coatings for continuous oil-water separation[J]. Journal of Materials
用前景。
Chemistry A, 2015, 3(19): 10248-10253.
[20] LIU Z J, ZHANG C Y, ZHANG X G, et al. Durable superhydrophobic
参考文献: PVDF/FEVE/GO@TiO 2 composite coating with excellent anti-scaling
and UV resistance properties[J]. Chemical Engineering Journal,
[1] DAS S, KUMAR S, SAMAL S K, et al. A review on superhydrophobic
polymer nanocoatings: Recent development and applications[J]. 2021, 411: 128632.
Industrial & Engineering Chemistry Research, 2018, 57(8): 2727- [21] ZHOU H, WANG H X, NIU H T, et al. Fluoroalkyl silane modified
2745. silicone rubber/nanoparticle composite: A super durable, robust
[2] BAYER I S. Superhydrophobic coatings from ecofriendly materials superhydrophobic fabric coating[J]. Advanced Materials, 2012, 24(18):
and processes: A review[J]. Advanced Materials Interfaces, 2020, 2409-2412.
7(13): 2000095. [22] XUE C H, LI X, JIA S T, et al. Fabrication of robust superhydrophobic
[3] ENGLAND M W, URATA C, DUNDERDALE G J, et al. fabrics based on coating with PVDF/PDMS [J]. RSC Advances,
Anti-fogging/self-healing properties of clay-containing transparent 2016, 6(88): 84887-84892.
nanocomposite thin films[J]. ACS Applied Materials & Interfaces, [23] HUANG M C (黄梦晨), XUE C H (薛朝华), GUO X J (郭小静),
2016, 8(7): 4318-4322. et al. Superhydrophobic fabrics by coating with PVDF/SiO 2/PDMS
[4] ZHANG Z Q, YU D F, XU X B, et al. Versatile snail-inspired [J]. Packaging Engineering (包装工程), 2021, 42(7): 76-84.
superamphiphobic coatings with repeatable adhesion and recyclability[J]. [24] JIN M Y, LIN Y, LIAO Y, et al. Development of highly-efficient
Chemical Engineering Science, 2021, 230: 116182. ZIF-8@PDMS/PVDF nanofibrous composite membrane for phenol
[5] ISIMJAN T T, WANG T, ROHANI S. A novel method to prepare removal in aqueous-aqueous membrane extractive process[J]. Journal
superhydrophobic, UV resistance and anti-corrosion steel surface[J]. of Membrane Science, 2018, 568: 121-133.
Chemical Engineering Journal, 2012, 210: 182-187. [25] LEE E J, DEKA B J, AN A K. Reinforced superhydrophobic
[6] LIU M H, MAO T Y, ZHANG Y C, et al. General water-based membrane coated with aerogel-assisted polymeric microspheres for
strategy for the preparation of superhydrophobic coatings on smooth membrane distillation[J]. Journal of Membrane Science, 2019, 573:
substrates[J]. Industrial & Engineering Chemistry Research, 2017, 570-578.
56(46): 13783-13790. [26] LUO Z L, LI Y, DUAN C, et al. Fabrication of a superhydrophobic
[7] CAO L, JONES A K, SIKKA V K, et al. Anti-icing superhydrophobic mesh based on PDMS/SiO 2 nanoparticles/PVDF microparticles/KH-
coatings[J]. Langmuir, 2009, 25(21): 12444-12448. 550 by one-step dip-coating method[J]. RSC Advances, 2018, 8(29):
[8] HUANG W X, CHEN Y F, YANG C X, et al. pH-driven phase 16251-16259.
separation: Simple routes for fabricating porous TiO 2 film with [27] WANG J, LIU X, JIN T, et al. Preparation of nanocellulose and its
superhydrophilic and anti-fog properties[J]. Ceramics International, potential in reinforced composites: A review[J]. Journal of Biomaterials
2015, 41(6): 7573-7581. Science, Polymer Edition, 2019, 30(11): 919-946.
[9] HAN X T, GUO Z G. Graphene and its derivative composite materials [28] KHALIL H A, DAVOUDPOUR Y, ISLAM M N, et al. Production
with special wettability: Potential application in oil-water separation[J]. and modification of nanofibrillated cellulose using various mechanical
Carbon, 2021, 172: 647-681. processes: A review[J]. Carbohydrate polymers, 2014, 99: 649-665.
[10] PARVATE S, DIXIT P, CHATTOPADHYAY S. Superhydrophobic [29] CHU Y L, SUN Y, WU W B, et al. Dispersion properties of
surfaces: Insights from theory and experiment[J]. The Journal of nanocellulose: A review[J]. Carbohydrate Polymers, 2020, 250:
Physical Chemistry B, 2020, 124(8): 1323-1360. 116892.
[11] DIMITRAKELLIS P, TRAVLOS A, PSYCHARIS V P, et al. [30] YANG W X, ZHANG Y, LIU T Y, et al. Completely green approach
Superhydrophobic paper by facile and fast atmospheric pressure for the preparation of strong and highly conductive graphene
plasma etching[J]. Plasma Processes and Polymers, 2017, 14(3): composite film by using nanocellulose as dispersing agent and
1600069. mechanical compression[J]. ACS Sustainable Chemistry & Engineering,
[12] LIU Y, LI S Y, ZHANG J J, et al. Corrosion inhibition of biomimetic 2017, 5(10): 9102-9113.
super-hydrophobic electrodeposition coatings on copper substrate[J]. [31] WANG Q Q, ZHU J Y, REINER R S, et al. Approaching zero
Corrosion Science, 2015, 94: 190-196. cellulose loss in cellulose nanocrystal (CNC) production: Recovery
[13] LAKSHMI R V, BHARATHIDASAN T, BERA P, et al. Fabrication and characterization of cellulosic solid residues (CSR) and CNC[J].
of superhydrophobic and oleophobic sol-gel nanocomposite coating[J]. Cellulose, 2012, 19(6): 2033-2047.
Surface and Coatings Technology, 2012, 206(19): 3888-3894. [32] HE Y C, WANG L X, WU T N, et al. Facile fabrication of
[14] WANG Y, PENG H K, LI T T, et al. Lightweight, flexible and hierarchical textures for substrate-independent and durable
superhydrophobic conductive composite films based on layer-by- superhydrophobic surfaces[J]. Nanoscale, 2022, 14(26): 9392-9400.
layer self-assembly for high-performance electromagnetic interference [33] DEEPA B, ABRAHAM E, CORDEIRO N, et al. Utilization of
shielding[J]. Composites Part A: Applied Science and Manufacturing, various lignocellulosic biomass for the production of nanocellulose:
2021, 141: 106199. A comparative study[J]. Cellulose, 2015, 22(2): 1075-1090.
[15] SAJI V S. Superhydrophobic surfaces and coatings by electrochemical [34] TIAN C H, YI J N, WU Y Q, et al. Preparation of highly charged
anodic oxidation and plasma electrolytic oxidation[J]. Advances in cellulose nanofibrils using high-pressure homogenization coupled
Colloid and Interface Science, 2020, 283: 102245. with strong acid hydrolysis pretreatments[J]. Carbohydrate Polymers,
[16] SEYFI J, PANAHI S M, ORAEIGHODOUSI A, et al. Antibacterial 2016, 136: 485-492.
superhydrophobic polyvinyl chloride surfaces via the improved phase [35] ISLAM M T, ALAM M M, PATRUCCO A, et al. Preparation of
separation process using silver phosphate nanoparticles[J]. Colloids nanocellulose: A review[J]. AATCC Journal of Research, 2014, 1(5):
and Surfaces B: Biointerfaces, 2019, 183: 110438. 17-23.
[17] LIU Z J, REN L, JING J, et al. Fabrication of robust superhydrophobic [36] SALIMI S, SOTUDEH G R, ZARGHAMI R, et al. Production of
organic-inorganic hybrid coating through a novel two-step phase nanocellulose and its applications in drug delivery: A critical review[J].
separation method[J]. Progress in Organic Coatings, 2021, 157: 106320. ACS Sustainable Chemistry & Engineering, 2019, 7(19): 15800-
[18] ZHU Y W, PEI L, AMBREEN J, et al. Facile preparation of a 15827.
fluorine-free, robust, superhydrophobic coating through dip coating [37] CHO K L, LIAW I I, WU A H F, et al. Influence of roughness on a
combined with non-solvent induced phase separation (dip-coating- transparent superhydrophobic coating[J]. The Journal of Physical
NIPS) method[J]. Macromolecular Chemistry and Physics, 2020, Chemistry C, 2010, 114(25): 11228-11233.
221(7): 2000023. (下转第 2688 页)