Page 133 - 《精细化工》2023年第12期
P. 133

第 12 期                 许   婧,等: CNCs 增强相分离法构建 PVDF/PDMS 超疏水表面                           ·2675·


            防水防污、油水分离、自清洁等领域具有广阔的应                             [19]  XUE C H, LI Y R, HOU J L, et al. Self-roughened superhydrophobic
                                                                   coatings for continuous oil-water separation[J]. Journal of Materials
            用前景。
                                                                   Chemistry A, 2015, 3(19): 10248-10253.
                                                               [20]  LIU Z J, ZHANG C Y, ZHANG X G, et al. Durable superhydrophobic
            参考文献:                                                  PVDF/FEVE/GO@TiO 2 composite coating with excellent anti-scaling
                                                                   and UV resistance properties[J]. Chemical Engineering Journal,
            [1]   DAS S, KUMAR S, SAMAL S K, et al. A review on superhydrophobic
                 polymer nanocoatings: Recent development and applications[J].   2021, 411: 128632.
                 Industrial & Engineering Chemistry Research, 2018, 57(8): 2727-   [21]  ZHOU H, WANG H X, NIU H T, et al. Fluoroalkyl silane modified
                 2745.                                             silicone rubber/nanoparticle composite: A super durable, robust
            [2]   BAYER I S. Superhydrophobic coatings from ecofriendly materials   superhydrophobic fabric coating[J]. Advanced Materials, 2012, 24(18):
                 and processes: A review[J]. Advanced Materials Interfaces, 2020,   2409-2412.
                 7(13): 2000095.                               [22]  XUE C H, LI X, JIA S T, et al. Fabrication of robust superhydrophobic
            [3]   ENGLAND M  W, URATA  C, DUNDERDALE G J,  et al.   fabrics based on coating with PVDF/PDMS [J]. RSC  Advances,
                 Anti-fogging/self-healing properties of clay-containing transparent   2016, 6(88): 84887-84892.
                 nanocomposite thin films[J]. ACS Applied Materials & Interfaces,   [23]  HUANG M C (黄梦晨), XUE C H (薛朝华), GUO X J (郭小静),
                 2016, 8(7): 4318-4322.                            et al. Superhydrophobic fabrics by coating with PVDF/SiO 2/PDMS
            [4]   ZHANG Z Q, YU D F, XU  X B,  et al. Versatile snail-inspired   [J]. Packaging Engineering (包装工程), 2021, 42(7): 76-84.
                 superamphiphobic coatings with repeatable adhesion and recyclability[J].   [24]  JIN  M Y,  LIN Y,  LIAO Y,  et al. Development of highly-efficient
                 Chemical Engineering Science, 2021, 230: 116182.   ZIF-8@PDMS/PVDF nanofibrous composite  membrane for phenol
            [5]   ISIMJAN T T, WANG T,  ROHANI S. A novel  method to prepare   removal in aqueous-aqueous membrane extractive process[J]. Journal
                 superhydrophobic, UV resistance and anti-corrosion steel surface[J].   of Membrane Science, 2018, 568: 121-133.
                 Chemical Engineering Journal, 2012, 210: 182-187.   [25]  LEE E J,  DEKA B J,  AN A K.  Reinforced superhydrophobic
            [6]   LIU M H, MAO  T Y, ZHANG Y  C, et al. General water-based   membrane coated  with aerogel-assisted polymeric  microspheres for
                 strategy for the preparation of superhydrophobic coatings on smooth   membrane distillation[J]. Journal of Membrane Science, 2019, 573:
                 substrates[J]. Industrial & Engineering Chemistry Research, 2017,   570-578.
                 56(46): 13783-13790.                          [26]  LUO Z L, LI Y, DUAN C, et al. Fabrication of a superhydrophobic
            [7]   CAO L, JONES A K, SIKKA V K, et al. Anti-icing superhydrophobic   mesh based on PDMS/SiO 2 nanoparticles/PVDF microparticles/KH-
                 coatings[J]. Langmuir, 2009, 25(21): 12444-12448.   550 by one-step dip-coating method[J]. RSC Advances, 2018, 8(29):
            [8]   HUANG W  X, CHEN Y  F,  YANG C  X, et al. pH-driven phase   16251-16259.
                 separation: Simple routes for fabricating porous TiO 2 film with   [27]  WANG J, LIU X, JIN T, et al. Preparation of nanocellulose and its
                 superhydrophilic and anti-fog properties[J]. Ceramics International,   potential in reinforced composites: A review[J]. Journal of Biomaterials
                 2015, 41(6): 7573-7581.                           Science, Polymer Edition, 2019, 30(11): 919-946.
            [9]   HAN X T, GUO Z G. Graphene and its derivative composite materials   [28]  KHALIL H A, DAVOUDPOUR Y, ISLAM M N, et al. Production
                 with special wettability: Potential application in oil-water separation[J].   and modification of nanofibrillated cellulose using various mechanical
                 Carbon, 2021, 172: 647-681.                       processes: A review[J]. Carbohydrate polymers, 2014, 99: 649-665.
            [10]  PARVATE S, DIXIT P, CHATTOPADHYAY S. Superhydrophobic   [29]  CHU  Y  L, SUN Y, WU W B,  et al.  Dispersion properties of
                 surfaces: Insights from theory and experiment[J]. The Journal of   nanocellulose: A review[J]. Carbohydrate Polymers, 2020, 250:
                 Physical Chemistry B, 2020, 124(8): 1323-1360.    116892.
            [11]  DIMITRAKELLIS P, TRAVLOS A, PSYCHARIS V P,  et al.   [30]  YANG W X, ZHANG Y, LIU T Y, et al. Completely green approach
                 Superhydrophobic  paper by facile and fast atmospheric pressure   for the preparation of strong and  highly conductive graphene
                 plasma etching[J]. Plasma Processes and Polymers, 2017, 14(3):   composite film by using  nanocellulose as dispersing agent and
                 1600069.                                          mechanical compression[J]. ACS Sustainable Chemistry & Engineering,
            [12]  LIU Y, LI S Y, ZHANG J J, et al. Corrosion inhibition of biomimetic   2017, 5(10): 9102-9113.
                 super-hydrophobic electrodeposition coatings on copper substrate[J].   [31]  WANG Q  Q, ZHU J Y, REINER  R S, et al. Approaching zero
                 Corrosion Science, 2015, 94: 190-196.             cellulose loss in cellulose nanocrystal (CNC) production: Recovery
            [13]  LAKSHMI R V, BHARATHIDASAN T, BERA P, et al. Fabrication   and characterization of cellulosic solid residues (CSR) and CNC[J].
                 of superhydrophobic and oleophobic sol-gel nanocomposite coating[J].   Cellulose, 2012, 19(6): 2033-2047.
                 Surface and Coatings Technology, 2012, 206(19): 3888-3894.   [32]  HE  Y C, WANG L X, WU T N, et al. Facile fabrication of
            [14]  WANG  Y, PENG  H K, LI T T,  et al. Lightweight, flexible and   hierarchical textures for substrate-independent and durable
                 superhydrophobic conductive composite films based on layer-by-   superhydrophobic surfaces[J]. Nanoscale, 2022, 14(26): 9392-9400.
                 layer self-assembly for high-performance electromagnetic interference   [33]  DEEPA B, ABRAHAM  E,  CORDEIRO N,  et al. Utilization of
                 shielding[J]. Composites Part A: Applied Science and Manufacturing,   various lignocellulosic biomass for the production of nanocellulose:
                 2021, 141: 106199.                                A comparative study[J]. Cellulose, 2015, 22(2): 1075-1090.
            [15]  SAJI V S. Superhydrophobic surfaces and coatings by electrochemical   [34]  TIAN C H, YI J N, WU Y Q, et al. Preparation of highly charged
                 anodic oxidation and plasma  electrolytic oxidation[J]. Advances in   cellulose nanofibrils using  high-pressure homogenization coupled
                 Colloid and Interface Science, 2020, 283: 102245.   with strong acid hydrolysis pretreatments[J]. Carbohydrate Polymers,
            [16]  SEYFI J, PANAHI S M, ORAEIGHODOUSI A, et al. Antibacterial   2016, 136: 485-492.
                 superhydrophobic polyvinyl chloride surfaces via the improved phase   [35]  ISLAM M T, ALAM M M, PATRUCCO A,  et al. Preparation  of
                 separation process using silver phosphate nanoparticles[J]. Colloids   nanocellulose: A review[J]. AATCC Journal of Research, 2014, 1(5):
                 and Surfaces B: Biointerfaces, 2019, 183: 110438.   17-23.
            [17]  LIU Z J, REN L, JING J, et al. Fabrication of robust superhydrophobic   [36]  SALIMI S, SOTUDEH G  R, ZARGHAMI R,  et al. Production of
                 organic-inorganic hybrid coating through a novel two-step phase   nanocellulose and its applications in drug delivery: A critical review[J].
                 separation method[J]. Progress in Organic Coatings, 2021, 157: 106320.   ACS Sustainable  Chemistry & Engineering,  2019, 7(19):  15800-
            [18]  ZHU  Y W, PEI L, AMBREEN J,  et al. Facile preparation of a   15827.
                 fluorine-free, robust, superhydrophobic coating through dip coating   [37]  CHO K L, LIAW I I, WU A H F, et al. Influence of roughness on a
                 combined with non-solvent induced phase separation (dip-coating-   transparent superhydrophobic coating[J]. The Journal of Physical
                 NIPS) method[J].  Macromolecular Chemistry and Physics, 2020,      Chemistry C, 2010, 114(25): 11228-11233.
                 221(7): 2000023.                                                            (下转第 2688 页)
   128   129   130   131   132   133   134   135   136   137   138