Page 43 - 《精细化工》2023年第12期
P. 43

第 12 期                 冯   颖,等:  壳聚糖稳定纳米零价铁及衍生物在水处理中的应用                                 ·2585·


            除率高达 99.02%以上。DIVYA 等           [59] 使用聚乙烯醇        [4]   LIU J (刘静), GU  T H (顾天航), WANG W (王伟),  et al. Surface
            与 CS-NZVI 结合制备了新型静电纺壳聚糖-PVA-纳                          chemistry and crystalline phase transformation of nanosized  zero-
                                                                   valent iron in aqueous phase reaction[J]. Acta Chimica Sinica (化学
            米零价铁纤维垫,其去除 As(Ⅲ)和 As(Ⅴ)的结                             学报), 2019, 77(2): 121-129.
            果令人满意,吸附容量分别可达(200.0±10.0)和                        [5]   ZHAO  X F (赵旭飞), WEI C J (魏才倢), ZHANG J (张瑾), et al.
                                                                   Kinetic study on degradation of  halogenated hydrocarbons in
            (142.9±7.2) mg/g。                                      groundwater by zero-valent iron particles with different particle sizes
                 上述研究表明,复合改性 CS-NZVI 可以实现快                         [J]. Acta Scientiarum Universitat Pekinensis (Natural Science) (北京
            速分离,对该材料的继续开发利用具有很大的潜力。                                大学学报:  自然科学版), 2018, 54(2): 435-442.
                                                               [6]   FU X Y (傅晓艳), ZHAO W T (赵委托), DU J K (杜江坤), et al.
                                                                   Degradation of Rhodamine B by persulfate activated by stabilized
            3   结束语与展望                                             nano zero-valent iron[J]. China Water and Wastewater (中国给水排
                                                                   水), 2020, 36(11): 57-62.
                 国家发展战略指出,“十四五”期间,污水处理                         [7]   YANG X D (杨晓丹), WANG Y R  (王玉如), Li M R (李敏睿).
            和资源化利用仍是有效缓解水资源供需矛盾,管控                                 Preparation, modification and removal of heavy  metals and organic
                                                                   pollutants from  wastewater by nano-sized zero-valent iron[J].
            水环境污染的重要路径。而开发新型的绿色、低碳、                                Chemical Industry Progress (化工进展), 2019, 38(7): 3412-3424.
            可循环利用的吸附剂是实现这一目标的有效手段。                             [8]   HUANG D, REN  Z Y,  LI X  Y,  et al. Mechanism of stability and
                                                                   transport of chitosan-stabilized nano zero-valent iron in saturated
            本文所述壳聚糖稳定纳米零价铁具有显著的吸附效                                 porous media[J]. International Journal of Environmental Research
            果和还原吸附能力,与壳聚糖相比具有还原性,能                                 and Public Health, 2021, 18(10): 1-16.
            通过转换离子价态来降低其毒性,与单独的纳米零                             [9]   XU Y (徐妍), YUAN C G (苑春刚). Preparation, stabilization and
                                                                   application of zero-valent iron nanocomposites[J]. Advances in
            价铁相比有更大的比表面积、良好的分散和迁移性                                 Chemistry (化学进展), 2022, 34(3): 717-742.
            能,深入研究壳聚糖稳定纳米零价铁及其衍生材料                             [10]  MINA K, MAHYAR M, ABBASALI Z, et al. A review on the use of
                                                                   chitosan and chitosan derivatives as the bio-adsorbents for the water
            具有重大意义。
                                                                   treatment: Removal of nitrogen-containing pollutants[J]. Carbohydrate
                 研究者对壳聚糖稳定纳米零价铁开展了大量研                              Polymers, 2021, 273: 625-637.
            究工作,包括对壳聚糖与纳米零价铁的最佳配比的                             [11]  FENG Y (冯颖), SHAO J (邵娟), LI Q X (李齐雪), et al. Research
                                                                   progress on removal of metal ions by chitosan and its derivatives[J].
            研究、对去除污染物的最佳 pH 的研究、对反应温                               Fine Chemicals (精细化工), 2021, 38(10): 1971-1980.
            度、初始浓度等最佳条件的研究等。进一步的工作                             [12]  KOLODZIEJSKA M, JANKOWSKA K, KLAK M, et al. Chitosan as
            可以从以下几方面进行考虑:(1)对 CS-NZVI 的制                           an underrated polymer in  modern tissue engineering[J].
                                                                   Nanomaterials, 2021, 11(11): 3019-3062.
            备过程进行优化,选用来源广泛、绿色安全的还原                             [13]  OMER A M,  DEY R, ELTAWEIL A  S,  et al. Insights into recent
            剂或研发新型反应器实现快速高效制备。(2)对混                                advances of chitosan-based adsorbents for sustainable removal of
                                                                   heavy  metals and anions[J].  Arabian Journal  of Chemistry, 2022,
            合体系中选择性吸附目标金属离子展开研究并将
                                                                   15(2): 1-25.
            其应用于从复杂废水环境中回收金属的工艺之中。                             [14]  ARANAZ I, ALCANTARA A R, CIVERA M C, et al. Chitosan: An
            (3)以提升 CS-NZVI 的吸附稳定性和吸附容量为                            overview of its  properties and applications[J]. Polymers, 2021,
                                                                   13(19): 3256-3282.
            目的对其进行改性研究,得到在多种工况下都能保                             [15]  WANI T U, PANDITH A H, SHEIKH F A. Polyelectrolytic nature of
            持高吸附率且能稳定存在和回收利用的吸附剂材                                  chitosan: Influence on physicochemical properties and synthesis of
                                                                   nanoparticles[J]. Journal of Drug Delivery Science and Technology,
            料。(4)使用 Materials Studio、Hyperchem、Materials
                                                                   2021, 65: 1-13.
            Explorer 等分子模拟软件对 CS-NZVI 及其衍生材料                   [16]  ZHANG Y Z, ZHAO M W, CHENG Q, et al. Research progress of
            的结构和吸附进行模拟研究,丰富对复合材料的研                                 adsorption and  removal of heavy metals by chitosan and  its
                                                                   derivatives: A review[J]. Chemosphere, 2021, 279: 1-19.
            究方法。                                               [17]  SADIQ A C, OLASUPO A, NGAH W S W,  et al. A decade
                                                                   development in  the application of chitosan-based materials for dye
            参考文献:                                                  adsorption: A short review[J]. International Journal of  Biological
            [1]   XU N (徐楠), WANG F (王芳). Preparation of nano-zero valent iron   Macromolecules, 2021, 191: 1151-1163.
                composite and its application in environmental pollution control[J].   [18]  LIAKOS E V, LAZARIDOU M, MICHAILIDOU G, et al. Chitosan
                Journal of Suzhou University of Science and  Technology (Natural   adsorbent derivatives for pharmaceuticals removal from effluents: A
                Science Edition)  (苏州科技大学学报:  自然科学版), 2020, 37(4):   review[J]. Macromol, 2021, 1(2): 130-154.
                1-12.                                          [19]  XU Y Y  (徐永瑶), SHEN  W Q (沈王庆), LIU  Y (刘银),  et al.
            [2]   JIN X (金旭), LIU F (刘方), DU H (杜嬛), et al. Research progress   Adsorption of Cr(Ⅵ) by chitosan-supported nanosized zero-valent
                on the application of nano-fiber supported zero-valent  iron based   iron[J]. New Chemical Materials (化工新型材料), 2022, 50(1):
                materials in environmental remediation[J]. Journal of Textile Science   228-233.
                and Technology (纺织学报), 2022, 43(3): 201-209.   [20]  GENG B, JIN Z H, LI T L, et al. Preparation of chitosan-stabilized
                                                                    0
            [3]   YIN L W, LIU L J, LIN S, et al. Synthesis and characterization of   Fe  nanoparticles for removal of hexavalent chromium in water[J].
                nanoscale zero-valent iron (nZVI) as an adsorbent for the simultaneous   Science of the Total Environment, 2009, 407(18): 4994-5000.
                removal of As(Ⅲ) and As(Ⅴ) from groundwater[J]. Journal of Water   [21]  JIN X Y (金晓英), CHEN Z X (陈征贤), GUO F P (郭飞鹏), et al.
                Process Engineering, 2022, 47(47): 1-11.           Ultrasound-assisted degradation of acid fuchsin by chitosan/
   38   39   40   41   42   43   44   45   46   47   48