Page 65 - 《精细化工》2023年第12期
P. 65
第 12 期 郑舒方,等: 石墨烯/聚合物泡沫压阻式应变传感器研究进展 ·2607·
的柔性压阻式应变传感器,始终是科研工作者追求 low-voltage operational cloth-based electronic skin for wearable
sensing and multifunctional integration uses: A tactile-induced
的目标。近年来,基于石墨烯和聚合物的三维多孔
insulating-to-conducting transition[J]. Advanced Functional Materials,
结构的柔性应变传感器在实现该目标方面取得了巨 2016, 26(8): 1286-1295.
大进步。本文总结分析了柔性应变传感器的传感机 [4] GE J, SUN L, ZHANG F R, et al. A stretchable electronic fabric
artificial skin with pressure-, lateral strain-, and flexion-sensitive
制,包括裂纹扩展机制、重叠-断开机制和隧穿效应 properties[J]. Advanced Materials, 2016, 28(4): 722-728.
机制等。介绍了 3 种构筑具有多孔结构的柔性应变 [5] WANG X J, LI H, WANG T Y, et al. Flexible and high-performance
piezoresistive strain sensors based on multi-walled carbon
传感器的工艺,其中,基于低成本聚合物泡沫或海
nanotubes@polyurethane foam[J]. RSC Advances, 2022, 12(22):
绵的柔性应变传感器在灵敏度、压力范围、信噪比、 14190-14196.
响应时间、线性度和稳定性方面均表现出良好性能, [6] BAI P, ZHU G, JING Q S, et al. Membrane-based self-powered
triboelectric sensors for pressure change detection and its uses in
极具发展前景。详细总结了通过上述 3 种工艺制备 security surveillance and healthcare monitoring[J]. Advanced
的柔性应变传感器的传感性能。介绍了柔性多孔应 Functional Materials, 2014, 24(37): 5807-5813.
[7] PANG C, LEE G Y, KIM T, et al. A flexible and highly sensitive
变传感器在人体运动监测领域的应用实例。 strain-gauge sensor using reversible interlocking of nanofibres[J].
目前,对于基于石墨烯和聚合物的三维多孔结 Nature Materials, 2012, 11(9): 795-801.
构的柔性应变传感器的研究还存在以下问题:(1)针 [8] DING Y R, XUE C H, GUO X J, et al. Flexible superamphiphobic
film with a 3D conductive network for wearable strain sensors in
对传感器的微观机理的研究不够完善,例如:仅依 humid conditions[J]. ACS Applied Electronic Materials, 2022, 4(1):
靠裂纹扩展、重叠-断开机制和隧穿效应等机制难以 345-355.
[9] CHENG H N, ZHANG N Y, YIN Y J, et al. A high-performance
解释传感器的电信号-应变曲线上经常出现的“肩 flexible piezoresistive pressure sensor features an integrated design
峰”现象,应加强对传感器微观结构在应变前和应 of conductive fabric electrode and polyurethane sponge[J].
Macromolecular Materials and Engineering, 2021, 306(9): 2100263.
变后的表征分析;(2)具有多孔泡沫或海绵结构的
[10] ZHANG Y, GAO Q, ZHANG S, et al. RGO/MXene sandwich-
柔性应变传感器的新构筑工艺的研究较为缺乏,如: structured film at spunlace non-woven fabric substrate: Application
最近有些学者采用便捷高效的 3D 打印技术,制备 to EMI shielding and electrical heating[J]. Journal of Colloid and
Interface Science, 2022, 614: 194-204.
具有多孔结构的柔性应变传感器,然而相关方面的 [11] LIU L X, CHEN W, ZHANG H B, et al. Tough and electrically
研究还不够细致深入;(3)大多数多孔结构的柔性 conductive Ti 3C 2T x MXene-based core-shell fibers for high-
performance electromagnetic interference shielding and heating
应变传感器很难同时兼具高灵敏度、快速响应、高 application[J]. Chemical Engineering Journal, 2022, 430: 133074.
稳定性、宽检测范围等多项优异性能,应从微观结 [12] HU H L, MA Y L, YUE J L, et al. Porous GNP/PDMS composites
with significantly reduced percolation threshold of conductive filler
构的角度出发,分析其传感机制,指导柔性应变传
for stretchable strain sensors[J]. Composites Communications, 2022,
感器的微观和宏观结构设计。 29: 101033.
在人体运动监测方面,虽然具有多孔泡沫结构 [13] SENGUPTA D, KAMAT A M, SMIT Q, et al. Piezoresistive 3D
graphene-PDMS spongy pressure sensors for IoT enabled wearables
的柔性压阻式应变传感器在该方面表现出优异的识 and smart products[J]. Flexible and Printed Electronics, 2022, 7(1):
别性、灵敏度和再现性,但如何保障其实际应用的 015004.
[14] TOPRAKCI H A K, TURGUT A, TOPRAKCI O. Flexible composites
可行性仍面临巨大挑战。例如,在大拉伸应变下不
used as piezoresistive pressure sensors[J]. Materials Today: Proceedings,
破坏基体材料,同时保持传感器的良好线性度和可 2021, 46: 6904-6907.
循环性;进一步增强传感器在各种复杂环境条件下 [15] YAN T, WU Y T, YI W, et al. Recent progress on fabrication of
carbon nanotube-based flexible conductive networks for resistive-
的适应性和稳定性,同时提高传感器与人体皮肤的 type strain sensors[J]. Sensors and Actuators A: Physical, 2021, 327:
生物相容性;实现多孔柔性应变传感器的商业化, 112755.
[16] WU X D, HAN Y Y, ZHANG X X, et al. Large-area compliant,
开发传感器的智能可视化数据平台;集成多功能传 low-cost, and versatile pressure-sensing platform based on microcrack-
感器(如温度、压力、生理信号等)的研发;相关配 designed carbon black@polyurethane sponge for human-machine
套器件(如电源装置和信号传输装置等)的研发等。 interfacing[J]. Advanced Functional Materials, 2016, 26(34): 6246-6256.
[17] LIU H, DONG M Y, HUANG W J, et al. Lightweight conductive
graphene/thermoplastic polyurethane foams with ultrahigh
参考文献:
compressibility for piezoresistive sensing[J]. Journal of Materials
[1] YANG C Q, ZHANG D Z, WANG D Y, et al. Ultra-sensitive, Chemistry C, 2017, 5(1): 73-83.
stretchable, and bidirectional wearable strain sensor for human [18] MA Z L, WEI A J, MA J Z, et al. Lightweight, compressible and
motion detection[J]. Journal of Materials Chemistry C, 2022, 10(18): electrically conductive polyurethane sponges coated with synergistic
7076-7086. multiwalled carbon nanotubes and graphene for piezoresistive
[2] LIU C, LE L, ZHANG M S, et al. Tunable large-scale compressive sensors[J]. Nanoscale, 2018, 10(15): 7116-7126.
strain sensor based on carbon nanotube/polydimethylsiloxane foam [19] NAGHDI S, JALEH B, ESLAMIPANAH M, et al. Graphene family,
composites by additive manufacturing[J]. Advanced Engineering and their hybrid structures for electromagnetic interference shielding
Materials, 2022, 24(6): 2101337. applications: Recent trends and prospects[J]. Journal of Alloys and
[3] LAI Y C, YE B W, LU C F, et al. Extraordinarily sensitive and Compounds, 2022, (19): 1030-1031.