Page 65 - 《精细化工》2023年第12期
P. 65

第 12 期                   郑舒方,等:  石墨烯/聚合物泡沫压阻式应变传感器研究进展                                  ·2607·


            的柔性压阻式应变传感器,始终是科研工作者追求                                 low-voltage  operational cloth-based electronic skin  for  wearable
                                                                   sensing and multifunctional  integration  uses: A tactile-induced
            的目标。近年来,基于石墨烯和聚合物的三维多孔
                                                                   insulating-to-conducting transition[J]. Advanced Functional Materials,
            结构的柔性应变传感器在实现该目标方面取得了巨                                 2016, 26(8): 1286-1295.
            大进步。本文总结分析了柔性应变传感器的传感机                             [4]   GE J, SUN L, ZHANG F R,  et al. A stretchable electronic fabric
                                                                   artificial skin with pressure-, lateral strain-, and flexion-sensitive
            制,包括裂纹扩展机制、重叠-断开机制和隧穿效应                                properties[J]. Advanced Materials, 2016, 28(4): 722-728.
            机制等。介绍了 3 种构筑具有多孔结构的柔性应变                           [5]   WANG X J, LI H, WANG T Y, et al. Flexible and high-performance
                                                                   piezoresistive strain sensors based on multi-walled carbon
            传感器的工艺,其中,基于低成本聚合物泡沫或海
                                                                   nanotubes@polyurethane foam[J]. RSC Advances, 2022, 12(22):
            绵的柔性应变传感器在灵敏度、压力范围、信噪比、                                14190-14196.
            响应时间、线性度和稳定性方面均表现出良好性能,                            [6]   BAI P, ZHU G, JING Q S,  et al. Membrane-based self-powered
                                                                   triboelectric sensors for pressure change detection and  its uses in
            极具发展前景。详细总结了通过上述 3 种工艺制备                               security surveillance and healthcare  monitoring[J]. Advanced
            的柔性应变传感器的传感性能。介绍了柔性多孔应                                 Functional Materials, 2014, 24(37): 5807-5813.
                                                               [7]   PANG C, LEE  G  Y, KIM  T,  et al. A flexible and highly sensitive
            变传感器在人体运动监测领域的应用实例。                                    strain-gauge sensor using  reversible interlocking of nanofibres[J].
                 目前,对于基于石墨烯和聚合物的三维多孔结                              Nature Materials, 2012, 11(9): 795-801.
            构的柔性应变传感器的研究还存在以下问题:(1)针                           [8]   DING Y R, XUE C H, GUO X J, et al. Flexible superamphiphobic
                                                                   film with a 3D conductive network for wearable strain sensors in
            对传感器的微观机理的研究不够完善,例如:仅依                                 humid conditions[J]. ACS Applied Electronic Materials, 2022, 4(1):
            靠裂纹扩展、重叠-断开机制和隧穿效应等机制难以                                345-355.
                                                               [9]   CHENG H N,  ZHANG N Y, YIN  Y J,  et al. A high-performance
            解释传感器的电信号-应变曲线上经常出现的“肩                                 flexible piezoresistive pressure sensor features an integrated design
            峰”现象,应加强对传感器微观结构在应变前和应                                 of conductive fabric electrode and polyurethane sponge[J].
                                                                   Macromolecular Materials and Engineering, 2021, 306(9): 2100263.
            变后的表征分析;(2)具有多孔泡沫或海绵结构的
                                                               [10]  ZHANG  Y, GAO  Q, ZHANG S,  et al. RGO/MXene sandwich-
            柔性应变传感器的新构筑工艺的研究较为缺乏,如:                                structured film at spunlace non-woven fabric substrate: Application
            最近有些学者采用便捷高效的 3D 打印技术,制备                               to EMI shielding and electrical heating[J]. Journal of Colloid and
                                                                   Interface Science, 2022, 614: 194-204.
            具有多孔结构的柔性应变传感器,然而相关方面的                             [11]  LIU L X,  CHEN W, ZHANG H  B,  et al. Tough and electrically
            研究还不够细致深入;(3)大多数多孔结构的柔性                                conductive Ti 3C 2T x MXene-based core-shell fibers  for high-
                                                                   performance electromagnetic interference shielding and heating
            应变传感器很难同时兼具高灵敏度、快速响应、高                                 application[J]. Chemical Engineering Journal, 2022, 430: 133074.
            稳定性、宽检测范围等多项优异性能,应从微观结                             [12]  HU H L, MA Y L, YUE J L, et al. Porous GNP/PDMS composites
                                                                   with significantly reduced percolation threshold of conductive filler
            构的角度出发,分析其传感机制,指导柔性应变传
                                                                   for stretchable strain sensors[J]. Composites Communications, 2022,
            感器的微观和宏观结构设计。                                          29: 101033.
                 在人体运动监测方面,虽然具有多孔泡沫结构                          [13]  SENGUPTA D,  KAMAT A M, SMIT Q,  et al. Piezoresistive 3D
                                                                   graphene-PDMS spongy pressure sensors for IoT enabled wearables
            的柔性压阻式应变传感器在该方面表现出优异的识                                 and smart products[J]. Flexible and Printed Electronics, 2022, 7(1):
            别性、灵敏度和再现性,但如何保障其实际应用的                                 015004.
                                                               [14]  TOPRAKCI H A K, TURGUT A, TOPRAKCI O. Flexible composites
            可行性仍面临巨大挑战。例如,在大拉伸应变下不
                                                                   used as piezoresistive pressure sensors[J]. Materials Today: Proceedings,
            破坏基体材料,同时保持传感器的良好线性度和可                                 2021, 46: 6904-6907.
            循环性;进一步增强传感器在各种复杂环境条件下                             [15]  YAN T, WU  Y T, YI W,  et al. Recent progress  on  fabrication of
                                                                   carbon nanotube-based flexible conductive networks for resistive-
            的适应性和稳定性,同时提高传感器与人体皮肤的                                 type strain sensors[J]. Sensors and Actuators A: Physical, 2021, 327:
            生物相容性;实现多孔柔性应变传感器的商业化,                                 112755.
                                                               [16]  WU X D, HAN Y  Y, ZHANG X X,  et al. Large-area compliant,
            开发传感器的智能可视化数据平台;集成多功能传                                 low-cost,  and versatile  pressure-sensing platform  based on microcrack-
            感器(如温度、压力、生理信号等)的研发;相关配                                designed carbon  black@polyurethane sponge for human-machine
            套器件(如电源装置和信号传输装置等)的研发等。                                interfacing[J]. Advanced Functional Materials, 2016, 26(34): 6246-6256.
                                                               [17]  LIU H, DONG M  Y, HUANG  W J,  et al. Lightweight conductive
                                                                   graphene/thermoplastic  polyurethane  foams  with  ultrahigh
            参考文献:
                                                                   compressibility for piezoresistive sensing[J]. Journal of Materials
            [1]   YANG C Q, ZHANG D Z, WANG D  Y,  et al. Ultra-sensitive,   Chemistry C, 2017, 5(1): 73-83.
                 stretchable, and bidirectional wearable strain sensor for human   [18]  MA Z L, WEI A  J,  MA  J  Z,  et al.  Lightweight, compressible and
                 motion detection[J]. Journal of Materials Chemistry C, 2022, 10(18):   electrically conductive polyurethane sponges coated with synergistic
                 7076-7086.                                        multiwalled carbon nanotubes and graphene for piezoresistive
            [2]   LIU C, LE L, ZHANG M S, et al. Tunable large-scale compressive   sensors[J]. Nanoscale, 2018, 10(15): 7116-7126.
                 strain sensor based on carbon nanotube/polydimethylsiloxane foam   [19]  NAGHDI S, JALEH B, ESLAMIPANAH M, et al. Graphene family,
                 composites by additive manufacturing[J]. Advanced Engineering   and their hybrid structures for electromagnetic interference shielding
                 Materials, 2022, 24(6): 2101337.                  applications: Recent trends and prospects[J]. Journal of Alloys and
            [3]   LAI Y C,  YE B  W, LU C F,  et al. Extraordinarily sensitive and   Compounds, 2022, (19): 1030-1031.
   60   61   62   63   64   65   66   67   68   69   70