Page 127 - 《精细化工》2023年第3期
P. 127

第 3 期                  王焕君,等:  基于不同粒径 ZIF-8 多孔液体的二氧化碳捕集性能                                ·583·


            [20]  LAN X, HUANG N, WANG J, et al. A general and facile strategy for   colloid in ionic liquid with permanent porosity[J]. Langmuir, 2018,
                 precisely controlling the crystal size of monodispersed metal-organic   34: 3654-3660.
                 frameworks via separating the nucleation and growth[J]. Chem Commun   [32]  LI X, WANG D, HE Z, et al. Zeolitic imidazolate frameworks-based
                 (Camb), 2018, 54(6): 584-587.                     porous liquids with low viscosity for CO 2 and toluene uptakes[J].
            [21]  LUAN T B, CHIN H  Y, CHANG B  K,  et al. Dye adsorption in   Chemical Engineering Journal, 2021, 417: 129239.
                 ZIF-8: The importance of external surface area[J]. Microporous and   [33]  WANG D, XIN Y, LI X, et al. A universal approach to turn UiO-66
                 Mesoporous Materials, 2019, 277: 149-153.         into type 1 porous liquids  via post-synthetic  modification with
            [22]  ZHANG N,  HUANG Z,  ZHANG H,  et al. Highly efficient and   corona-canopy species for CO 2 capture[J]. Chemical  Engineering
                 reversible CO 2  capture by task-specific deep  eutectic solvents[J].   Journal, 2021, 416: 127625.
                 Industrial & Engineering Chemistry Research, 2019, 58(29): 13321-   [34] AVILA J, ČERVINKA C, DUGAS P Y, et al. Porous ionic liquids:
                 13329.                                            Structure, stability, and gas absorption mechanisms[J]. Advanced
            [23]  YAN H, ZHAO L, BAI Y, et al. Superbase ionic liquid-based deep   Materials Interfaces, 2021, 8(9): 2001982.
                 eutectic solvents for improving CO 2 absorption[J]. ACS Sustainable   [35]  AVILA J, LEPRE L F, SANTINI C C,  et al. High-performance
                 Chemistry & Engineering, 2020, 8(6): 2523-2530.   porous ionic liquids for low-pressure CO 2 capture[J]. Angewandte
            [24]  PHILIP F A, HENNI A. Enhancement of post-combustion CO 2 capture   Chemie, 2021, 133(23): 12986-12992.
                 capacity by incorporation of task-specific ionic liquid into ZIF-8[J].   [36]  FIRDAUS R M, DESFORGES A, RAHMAN MOHAMED A, et al.
                 Microporous and Mesoporous Materials, 2022, 330: 111580.   Progress in adsorption capacity of nanomaterials for carbon dioxide
            [25]  WANG D, XIN Y, LI X, et al. Transforming metal-organic frameworks   capture: A comparative study[J]. Journal of Cleaner Production,
                 into porous liquids via a covalent linkage strategy for CO 2 capture[J].   2021, 328: 129553.
                 ACS Applied Materials & Interfaces, 2021, 13(2): 2600-2609.   [37]  ÁLVAREZ-GUTIÉRREZ N, GIL M, RUBIERA F, et al. Kinetics of
            [26]  SU F, LI X, WANG Y,  et al. Constructing hollow carbon sphere   CO 2 adsorption on cherry stone-based carbons in CO 2/CH 4 separations[J].
                 liquid with  permanent porosity  via  electrostatic modification of   Chemical Engineering Journal, 2017, 307: 249-257.
                 polyionic liquids for CO 2 gas adsorption[J]. Separation and Purification   [38]  LOGANATHAN S, TIKMANI M, EDUBILLI S, et al. CO 2 adsorption
                 Technology, 2021, 277: 119410.                    kinetics  on mesoporous  silica under wide range  of  pressure and
            [27]  LI X,  YAO D, WANG D,  et al. Amino-functionalized ZIFs-based   temperature[J]. Chemical Engineering Journal, 2014, 256: 1-8.
                 porous liquids with low viscosity for efficient low-pressure CO 2   [39]  SERNA-GUERRERO  R, SAYARI  A. Modeling adsorption of CO 2
                 capture and CO 2/N 2 separation[J]. Chemical Engineering Journal,   on amine-functionalized mesoporous silica. 2: Kinetics and breakthrough
                 2022, 429: 132296.                                curves[J]. Chemical Engineering Journal, 2010, 161(1/2): 182-190.
            [28]  ZHANG J, CHAI S H, QIAO Z A, et al. Porous liquids: A promising   [40]  SHENG  L, LEI J,  CHEN Z,  et al. Solvent-free porous liquids for
                 class of media for gas separation[J]. Angewandte Chemie, 2015,   CO 2 capture based on silica nanoparticles with different core
                 127(3): 946-950.                                  structures[J]. Colloids and Surfaces A: Physicochemical and Engineering
            [29]  BANERJEE R, PHAN A, WANG B, et al. High-throughput synthesis   Aspects, 2022, 634: 128016.
                 of zeolitic imidazolate frameworks and application to CO 2 capture[J].   [41]  CHEN H, DONG S, ZHANG Y, et al. Robust structure regulation of
                 Science, 2008, 319(5865): 939-943.                geopolymer as novel efficient amine support to  prepare high-
            [30]  HUANG X C, LIN Y Y, ZHANG J P, et al. Ligand-directed strategy   efficiency CO 2 capture solid sorbent[J]. Chemical Engineering Journal,
                 for zeolite-type metal-organic frameworks: Zinc(Ⅱ) imidazolates   2022, 427: 131577.
                 with unusual zeolitic topologies[J]. Angewandte Chemie International   [42]  LIN Y, KONG C, ZHANG Q, et al. Metal-organic frameworks for
                 Edition, 2006, 45(10): 1557-1559.                  carbon dioxide capture and methane storage[J]. Advanced Energy
            [31]  LIU S J,LIU J D,HOU X D,et al.Porous liquid: A stable ZIF-8   Materials, 2017, 7(4): 1601296.



            (上接 571 页)                                             Technology (北京化工大学), 2021.
                                                               [24]  YIN Y (尹媛), ZHANG B (张斌), HAN J (韩建),  et al. Effect of
                                                                   modified carbon black on the conductivity of waterborne polyurethane
            [15]  VADILLO J, LARRAZA I, CALVO-CORREAS T, et al. Role of in   coated films[J]. Fine Chemicals (精细化工), 2018, 35(6): 1049-1054.
                 situ added cellulose nanocrystals as rheological modulator of novel   [25] ZHENG  L  (郑玲), DENG X (邓鑫), JIAO X  L (焦晓岚),  et al.
                 waterborne polyurethane urea for 3D-printing technology[J]. Cellulose,   Preparation and properties of waterborne polyurethane/graphene
                 2021, 28(8): 4729-4744.                           flexible conductive composites[J]. Engineering Plastics Application
            [16]  HONARKAR H. Waterborne polyurethanes: A review[J]. Journal of   (工程塑料应用), 2022, 50(5): 27-32.
                 Dispersion Science and Technology, 2018, 39(4): 507-516.
            [17]  YOUSEFI N, SUN X Y, LIN X Y, et al. Highly aligned graphene/   [26]  RAJAGOPAL C, SATYAM M. Studies on electrical-conductivity of
                 polymer nanocomposites with excellent dielectric properties for   insulator-conductor composites[J]. Journal of Applied Physics, 1978,
                 high-performance electromagnetic interference shielding[J]. Advanced   49(11): 5536-5542.
                 Materials, 2014, 26(31): 5480-5487.           [27]  SHENG P, SIEHEL E K, GITTLEMAN J I. Fluctuation-induced
            [18]  NAM K H, CHAE K H, CHOI J H,  et al. Superior carbon black:   tunneling conduction in carbon polyvinylchloride composites[J]. Physical
                 High-performance  anode and conducting additive for  rechargeable   Review Letters, 1978, 40(18): 1197-1200.
                 Li-and Na-ion batteries[J]. Chemical Engineering Journal, 2021, 417:   [28]  DONG H M (董慧民), QIAN H H (钱黄海), CHENG L J (程丽君),
                 129242.                                           et al. Research progress in  graphene/rubber  conducting
            [19]  WEI X L (魏晓林), ZHOU J H (周建辉), LI H Y (李宏岩), et al.   nanocomposites [J]. Journal of Materials Engineering (材料工程),
                 Influence of  surface characteristics of carbon  black on combustion   2017, 45(3): 17-27.
                 performance of  modified double base  propellant[J]. New  Chemical   [29]  CHEN S G (陈仕国). Preparation and vapor sensing  properties  of
                 Materials (化工新型材料), 2021,49(6): 98-102.           carbon black/waterborne polyurethane conductive composites[D].
            [20]  WANG Y G (王延刚), TAN H S (谭洪生), LI L P (李丽平). Effect of   Guangzhou: Sun Yat-sen University (中山大学), 2005.
                 modified carbon black on resistance and temperature characteristic of   [30]  SHI G  Y (史国玉). Preparation and piezoresistive properties of
                 multiphase polyolefin/carbon black conductive composites[J]. Engineering   graphene/silicone rubber composites[D]. Zhenjiang: Jiangsu
                 Plastics Application (工程塑料应用), 2012, 40(12): 97-101.   University (江苏大学), 2018.
            [21]  ZHOU X J (周晓军), LI Q Y (李秋影), WU C F (吴驰飞). Preparation   [31]  CHEN J H (陈剑华), LEI D H (雷德华), YE  Z S (叶祖山), et al.
                 of sodium polystyrene sulfonate grafted carbon black by ultrasonic-   Preparation and properties  of waterborne polyurethane  conductive
                 induced free radical polymerization[J]. Acta Polymerica Sinica (高分  coatings[J]. Guangzhou Chemical Industry (广州化工), 2021, 49(9):
                 子学报), 2008, 39(4) : 366-370.                      60-63, 110.
            [22]  HAN Z (韩真), LIU L Y (刘莲英), YANG W T (杨万泰). Study of   [32]  WANG F F (王芳芳). Preparation and properties  of multi-walled
                 surface oxidation of carbon black and its water dispersion[J]. Journal   carbon nanotubes/waterborne polyurethane anticorrosive conductive
                 of Beijing University of Chemical Technology (Natural Science) (北  coating[D]. Xi'an: Xi'an University of Technology (西安理工大学), 2020.
                 京化工大学学报:  自然科学版), 2010, 37(1): 78-84.         [33]  LIU L X, SHEN  Z G, ZHANG  X  J,  et al. Highly conductive
            [23]  CAO J N (曹劲楠). Preparation and application of modified carbon   graphene/carbon black screen printing inks for flexible electronics[J].
                 black/rubber nanocomposites[D]. Beijing: Beijing University of Chemical   Journal of Colloid and Interface Science, 2021, 582: 12-21.
   122   123   124   125   126   127   128   129   130   131   132