Page 127 - 《精细化工》2023年第3期
P. 127
第 3 期 王焕君,等: 基于不同粒径 ZIF-8 多孔液体的二氧化碳捕集性能 ·583·
[20] LAN X, HUANG N, WANG J, et al. A general and facile strategy for colloid in ionic liquid with permanent porosity[J]. Langmuir, 2018,
precisely controlling the crystal size of monodispersed metal-organic 34: 3654-3660.
frameworks via separating the nucleation and growth[J]. Chem Commun [32] LI X, WANG D, HE Z, et al. Zeolitic imidazolate frameworks-based
(Camb), 2018, 54(6): 584-587. porous liquids with low viscosity for CO 2 and toluene uptakes[J].
[21] LUAN T B, CHIN H Y, CHANG B K, et al. Dye adsorption in Chemical Engineering Journal, 2021, 417: 129239.
ZIF-8: The importance of external surface area[J]. Microporous and [33] WANG D, XIN Y, LI X, et al. A universal approach to turn UiO-66
Mesoporous Materials, 2019, 277: 149-153. into type 1 porous liquids via post-synthetic modification with
[22] ZHANG N, HUANG Z, ZHANG H, et al. Highly efficient and corona-canopy species for CO 2 capture[J]. Chemical Engineering
reversible CO 2 capture by task-specific deep eutectic solvents[J]. Journal, 2021, 416: 127625.
Industrial & Engineering Chemistry Research, 2019, 58(29): 13321- [34] AVILA J, ČERVINKA C, DUGAS P Y, et al. Porous ionic liquids:
13329. Structure, stability, and gas absorption mechanisms[J]. Advanced
[23] YAN H, ZHAO L, BAI Y, et al. Superbase ionic liquid-based deep Materials Interfaces, 2021, 8(9): 2001982.
eutectic solvents for improving CO 2 absorption[J]. ACS Sustainable [35] AVILA J, LEPRE L F, SANTINI C C, et al. High-performance
Chemistry & Engineering, 2020, 8(6): 2523-2530. porous ionic liquids for low-pressure CO 2 capture[J]. Angewandte
[24] PHILIP F A, HENNI A. Enhancement of post-combustion CO 2 capture Chemie, 2021, 133(23): 12986-12992.
capacity by incorporation of task-specific ionic liquid into ZIF-8[J]. [36] FIRDAUS R M, DESFORGES A, RAHMAN MOHAMED A, et al.
Microporous and Mesoporous Materials, 2022, 330: 111580. Progress in adsorption capacity of nanomaterials for carbon dioxide
[25] WANG D, XIN Y, LI X, et al. Transforming metal-organic frameworks capture: A comparative study[J]. Journal of Cleaner Production,
into porous liquids via a covalent linkage strategy for CO 2 capture[J]. 2021, 328: 129553.
ACS Applied Materials & Interfaces, 2021, 13(2): 2600-2609. [37] ÁLVAREZ-GUTIÉRREZ N, GIL M, RUBIERA F, et al. Kinetics of
[26] SU F, LI X, WANG Y, et al. Constructing hollow carbon sphere CO 2 adsorption on cherry stone-based carbons in CO 2/CH 4 separations[J].
liquid with permanent porosity via electrostatic modification of Chemical Engineering Journal, 2017, 307: 249-257.
polyionic liquids for CO 2 gas adsorption[J]. Separation and Purification [38] LOGANATHAN S, TIKMANI M, EDUBILLI S, et al. CO 2 adsorption
Technology, 2021, 277: 119410. kinetics on mesoporous silica under wide range of pressure and
[27] LI X, YAO D, WANG D, et al. Amino-functionalized ZIFs-based temperature[J]. Chemical Engineering Journal, 2014, 256: 1-8.
porous liquids with low viscosity for efficient low-pressure CO 2 [39] SERNA-GUERRERO R, SAYARI A. Modeling adsorption of CO 2
capture and CO 2/N 2 separation[J]. Chemical Engineering Journal, on amine-functionalized mesoporous silica. 2: Kinetics and breakthrough
2022, 429: 132296. curves[J]. Chemical Engineering Journal, 2010, 161(1/2): 182-190.
[28] ZHANG J, CHAI S H, QIAO Z A, et al. Porous liquids: A promising [40] SHENG L, LEI J, CHEN Z, et al. Solvent-free porous liquids for
class of media for gas separation[J]. Angewandte Chemie, 2015, CO 2 capture based on silica nanoparticles with different core
127(3): 946-950. structures[J]. Colloids and Surfaces A: Physicochemical and Engineering
[29] BANERJEE R, PHAN A, WANG B, et al. High-throughput synthesis Aspects, 2022, 634: 128016.
of zeolitic imidazolate frameworks and application to CO 2 capture[J]. [41] CHEN H, DONG S, ZHANG Y, et al. Robust structure regulation of
Science, 2008, 319(5865): 939-943. geopolymer as novel efficient amine support to prepare high-
[30] HUANG X C, LIN Y Y, ZHANG J P, et al. Ligand-directed strategy efficiency CO 2 capture solid sorbent[J]. Chemical Engineering Journal,
for zeolite-type metal-organic frameworks: Zinc(Ⅱ) imidazolates 2022, 427: 131577.
with unusual zeolitic topologies[J]. Angewandte Chemie International [42] LIN Y, KONG C, ZHANG Q, et al. Metal-organic frameworks for
Edition, 2006, 45(10): 1557-1559. carbon dioxide capture and methane storage[J]. Advanced Energy
[31] LIU S J,LIU J D,HOU X D,et al.Porous liquid: A stable ZIF-8 Materials, 2017, 7(4): 1601296.
(上接 571 页) Technology (北京化工大学), 2021.
[24] YIN Y (尹媛), ZHANG B (张斌), HAN J (韩建), et al. Effect of
modified carbon black on the conductivity of waterborne polyurethane
[15] VADILLO J, LARRAZA I, CALVO-CORREAS T, et al. Role of in coated films[J]. Fine Chemicals (精细化工), 2018, 35(6): 1049-1054.
situ added cellulose nanocrystals as rheological modulator of novel [25] ZHENG L (郑玲), DENG X (邓鑫), JIAO X L (焦晓岚), et al.
waterborne polyurethane urea for 3D-printing technology[J]. Cellulose, Preparation and properties of waterborne polyurethane/graphene
2021, 28(8): 4729-4744. flexible conductive composites[J]. Engineering Plastics Application
[16] HONARKAR H. Waterborne polyurethanes: A review[J]. Journal of (工程塑料应用), 2022, 50(5): 27-32.
Dispersion Science and Technology, 2018, 39(4): 507-516.
[17] YOUSEFI N, SUN X Y, LIN X Y, et al. Highly aligned graphene/ [26] RAJAGOPAL C, SATYAM M. Studies on electrical-conductivity of
polymer nanocomposites with excellent dielectric properties for insulator-conductor composites[J]. Journal of Applied Physics, 1978,
high-performance electromagnetic interference shielding[J]. Advanced 49(11): 5536-5542.
Materials, 2014, 26(31): 5480-5487. [27] SHENG P, SIEHEL E K, GITTLEMAN J I. Fluctuation-induced
[18] NAM K H, CHAE K H, CHOI J H, et al. Superior carbon black: tunneling conduction in carbon polyvinylchloride composites[J]. Physical
High-performance anode and conducting additive for rechargeable Review Letters, 1978, 40(18): 1197-1200.
Li-and Na-ion batteries[J]. Chemical Engineering Journal, 2021, 417: [28] DONG H M (董慧民), QIAN H H (钱黄海), CHENG L J (程丽君),
129242. et al. Research progress in graphene/rubber conducting
[19] WEI X L (魏晓林), ZHOU J H (周建辉), LI H Y (李宏岩), et al. nanocomposites [J]. Journal of Materials Engineering (材料工程),
Influence of surface characteristics of carbon black on combustion 2017, 45(3): 17-27.
performance of modified double base propellant[J]. New Chemical [29] CHEN S G (陈仕国). Preparation and vapor sensing properties of
Materials (化工新型材料), 2021,49(6): 98-102. carbon black/waterborne polyurethane conductive composites[D].
[20] WANG Y G (王延刚), TAN H S (谭洪生), LI L P (李丽平). Effect of Guangzhou: Sun Yat-sen University (中山大学), 2005.
modified carbon black on resistance and temperature characteristic of [30] SHI G Y (史国玉). Preparation and piezoresistive properties of
multiphase polyolefin/carbon black conductive composites[J]. Engineering graphene/silicone rubber composites[D]. Zhenjiang: Jiangsu
Plastics Application (工程塑料应用), 2012, 40(12): 97-101. University (江苏大学), 2018.
[21] ZHOU X J (周晓军), LI Q Y (李秋影), WU C F (吴驰飞). Preparation [31] CHEN J H (陈剑华), LEI D H (雷德华), YE Z S (叶祖山), et al.
of sodium polystyrene sulfonate grafted carbon black by ultrasonic- Preparation and properties of waterborne polyurethane conductive
induced free radical polymerization[J]. Acta Polymerica Sinica (高分 coatings[J]. Guangzhou Chemical Industry (广州化工), 2021, 49(9):
子学报), 2008, 39(4) : 366-370. 60-63, 110.
[22] HAN Z (韩真), LIU L Y (刘莲英), YANG W T (杨万泰). Study of [32] WANG F F (王芳芳). Preparation and properties of multi-walled
surface oxidation of carbon black and its water dispersion[J]. Journal carbon nanotubes/waterborne polyurethane anticorrosive conductive
of Beijing University of Chemical Technology (Natural Science) (北 coating[D]. Xi'an: Xi'an University of Technology (西安理工大学), 2020.
京化工大学学报: 自然科学版), 2010, 37(1): 78-84. [33] LIU L X, SHEN Z G, ZHANG X J, et al. Highly conductive
[23] CAO J N (曹劲楠). Preparation and application of modified carbon graphene/carbon black screen printing inks for flexible electronics[J].
black/rubber nanocomposites[D]. Beijing: Beijing University of Chemical Journal of Colloid and Interface Science, 2021, 582: 12-21.