Page 165 - 《精细化工》2023年第4期
P. 165

す 4 ᱌                    ⃢ᎬႴ喑ぶ:  ᫝ಸϑ㖁㖇䛇䚝χ㘧⩢ϸ䉕⮱ݣิࣷו㘪➦ᕔ                                    g851g


                                              3
                       3
            হ 2.10 J/cm Вࣷੳ⩕ BOPP喍2.1 J/cm 喑70  Ď喎ȡ̷               via manipulating relaxation behavior[J]. CCS Chemistry, 2020, 2(5):
                                                                   1169-1177.
            䔝㐀᳉㶕ᬻ喑ᄳϑ㖁㐀Ჱᑂڒݝ㖇䛇䚝χ㘧͚㘪์                             [12]  YOU Y, LIU S  N, TU L,  et al. Controllable fabrication of
            ᩦ઱ڣౕც⍖ഌ㠰డڲ⮱ו㘪➦ᕔ喑␎䋠ᰡ倅⣜ධ                                 poly(arylene ether nitrile) dielectrics for thermal-resistant film
            ⍖Ꮣ⮱Ҭ⩕㺮Ⅿȡ                                               capacitors[J]. Macromolecules, 2019, 52(15): 5850-5859.
                                                               [13]  QIAO W Q (΁᪴ᑧ). Synthesis and properties of polyimides derived
                                                                   from  m-xylylenediamine monomer[J]. Fine  Chemicals  (㇫㏳ࡃጒ),
            3   㐀䃧                                                 2022, 39(6): 1141-1147.
                                                               [14]  SHEN Z H (↵ᔍᚔ), JIANG Y D (↌ᒓ䓫), LI B W (ᱻ჊᪴), et al.
                 ᱙᪴В TAP ͧϑ㖁ݯ喑䛴⩕ٵϑ㖁ऻ⣜ࡃ⮱᫦                           Research progress of high energy storage density ferroelectric
                                                                   polymer nanocomposites[J]. Acta Physica Sinica (➖⤳႓្), 2020,
            ∂ݣิγ᫝ಸϑ㖁㖇䛇䚝χ㘧⩢ϸ䉕ᱽ᫆喑Ꭳⵁ⾣                                 69(21): 13-19.
            γڣϸ⩢ᕔ㘪̺ࣷह⍖Ꮣ̸⮱ו㘪➦ᕔ喑ͨ㺮㐀䃧                             [15]  SHAO L, CHUNG T S, GOH S H, et al. Polyimide modification by a
                                                                   linear aliphatic diamine to enhance transport performance and
            ຯ̸喟                                                    plasticization resistance[J]. Journal of Membrane Science, 2005,
                喍1喎ϑ㖁㐀Ჱᰶߖλᩦ઱㖇䛇䚝χ㘧⩢ϸ䉕ᱽ                              256(1/2): 46-56.
            ᫆⮱ܨ⾬ᑧᏓ喑Ⱕ䒰λ᱗ϑ㖁㖇䛇䚝χ㘧喑TAP क़                           [16]  ZHANG T, CHEN X, THAKUR Y, et al. A highly scalable dielectric
                                                                   metamaterial with superior capacitor performance over a broad
            䛼ͧ 2.0%⮱ϑ㖁㖇䛇䚝χ㘧⮱ܨ⾬ᑧᏓ᣽ࡴ㜠                                temperature[J]. Science Advances, 2020, 6(4): eaax6622.
            399.4 MV/mȡ                                        [17]  WU X D, LIU Y, LI X T,  et al.  Atomic layer deposition coated
                                                                   polymer films with enhanced high-temperature dielectric strength
                喍2喎᝭ݣิϑ㖁㖇䛇䚝χ㘧⩢ϸ䉕ᱽ᫆⮱倅⍖                              suitable for film capacitor[J]. Surfaces and Interfaces, 2022, 28: 101686.
            ו㘪➦ᕔхλ᱗ϑ㖁㖇䛇䚝χ㘧喠ᒀ TAP क़䛼ͧ                           [18]  DUAN G Y (⃢ᎬႴ), HU J W (㘎䲆᪴), HU Z M (㘎⺃ᬻ), et al.
                                                                   Influence of BaTiO 3 nanowire aspect ratio on dielectric property of
            2.0%ᬣ喑ϑ㖁㖇䛇䚝χ㘧ౕ 150  Ďᬣ⮱ᰭ๔ U d ᣽                        poly(m-phenyleneisophthalamide) composite[J]. Chinese  Journal of
                         3
            ࡴ㜠 2.53 J/cm ȡ                                         Materials Research (ᱽ᫆ⵁ⾣႓្), 2022, 36(7): 527-535.
                                                               [19]  LIU J, ZHANG Y, WANG  Z Y,  et al. Optimizing electric field
                喍3喎ᄳϑ㖁㐀Ჱᑂڒݝ㖇䛇䚝χ㘧⩢ϸ䉕ᱽ᫆
                                                                   distribution  via tuning cross-linked  point  size for  improving the
            ͚㘪์ᰶ᩵䭺ѻ㖇व➖⩢ϸ䉕ᱽ᫆倅⍖̸⮱␼⩢≮                                 dielectric properties of polymer nanocomposites[J]. Nanoscale, 2020,
            ჳᏓ喑ᩦ઱㖇व➖⩢ϸ䉕ᱽ᫆⮱倅⍖ו㘪➦ᕔ喑ͧ                                 12(23): 12416-12425.
                                                               [20]  DUAN G Y (⃢ᎬႴ), LI Y (ᱻ⣒), HU J W (㘎䲆᪴), et al. Preparation
            ݣิ倅⍖㖇व➖⩢ϸ䉕᣽ӈγ᫝ᕊ䌜ȡ                                      and  properties of high-temperature poly(metaphenyleneisophthalamide)
                                                                   dielectric composites[J]. Materials Reports (ᱽ᫆ᄩ្), 2022, 36(4):
            ࣯㔰᪴⡛喟                                                  233-238.
                                                               [21]  LIU X J, ZHENG M S, CHEN G, et al. High-temperature polyimide
            [1]   FENG Q K, ZHONG S L, PEI J Y, et al. Recent progress and future   dielectric  materials for energy storage:  Theory, design, preparation
                 prospects on all-organic polymer dielectrics for energy storage   and properties[J]. Energy & Environmental Science, 2022, 15: 56-81.
                 capacitors[J]. Chemical Reviews, 2021, 122(3): 3820-3878.
            [2]   WU X, CHEN X, ZHANG Q M, et al. Advanced dielectric polymers   [22]  HUAN T D, BOGGS S, TEYSSEDRE G, et al. Advanced polymeric
                 for energy storage[J]. Energy Storage Materials, 2022, 44: 29-47.   dielectrics for high energy density applications[J]. Progress in
            [3]   FAN B H, ZHOU M Y, ZHANG C, et al. Polymer-based materials   Materials Science, 2016, 83: 236-269.
                 for achieving high energy density film capacitors[J]. Progress in   [23]  DUAN G Y (⃢ᎬႴ), HU F Y (㘎ܑ㠞), HU Z M (㘎⺃ᬻ), et al.
                 Polymer Science, 2019, 97: 101143.                Preparation and thermal conductivity of barium titanate-boron nitride/
            [4]   DONG J F (㦐Ͳ䨸), DENG X L (䗀ᭌⷷ), NIU Y J (➈⢶ཌ), et al.   poly(m-phenylenesophthalamide)  dielectric  composites[J].  Acta
                 Research progress of polymer based dielectrics for high-temperature   Materiae Compositae Sinica (ฺवᱽ᫆႓្), 2022, 39(3): 1079-1090.
                 capacitor energy storage[J]. Acta Physica Sinica (➖⤳႓្), 2020,   [24]  DAI Z H, LI T, GAO Y, et al. Achieving high dielectric permittivity,
                 69(21): 43-58.                                    high breakdown strength and  high efficiency by cross-linking of
            [5]   LI Q (ᱻ⥓), LI M  Q  (ᱻᰩ㡉).  Review and prospect of high   poly(vinylidene fluoride)/BaTiO 3 nanocomposites[J]. Composites
                 temperature polymer film capacitor  dielectric materials[J]. High   Science and Technology, 2019, 169: 142-150.
                 Voltage Technology (倅⩢ࢸឭᱜ), 2021, 47(9): 19-25.   [25]  MA R, BALDWIN A F, WANG C C,  et al. Rationally  designed
            [6]   ZHA J W, ZHENG M S, FAN B H, et al. Polymer-based dielectrics   polyimides for high-energy density capacitor applications[J]. ACS
                 with high permittivity for electric energy storage: A review[J]. Nano
                 Energy, 2021, 89: 106438.                         Applied Materials & Interfaces, 2014, 6(13): 10445-10451.
            [7]   LIU J G (݅䛾݇), ZHANG X M (ᑍ⻭᩼), TIAN F Q (⩝Ѕᑧ) , et al.   [26]  QIAO R, WANG  C, CHEN S,  et al. High-temperature  dielectric
                 Recent progress  of research and development for  high-temperature   polymers with high breakdown strength and energy density  via
                 resistant  polymer dielectrics[J]. Transactions of China Electrotechnical   constructing the electron traps in blends[J]. Composites Part A:
                 Society (⩢ጒឭᱜ႓្), 2017, 32(16): 14-24.            Applied Science and Manufacturing, 2022, 152: 106679.
            [8]   TANG Y D, XU W H, NIU S, et al. Cross-linked dielectric materials   [27]  JIN L, LIU J, ZHU L X, et al. Cross-linked poly(aryl ether ketone)/
                 for  high-temperature capacitive energy storage[J].  Journal  of Materials   boron nitride nanocomposites containing a stable chemical bonding
                 Chemistry A, 2021, 9(16): 10000-10011.            structure as high temperature dielectrics[J]. Composites Science and
            [9]   ZHA J W (ᴒӷь), TIAN Y Y (⩝༲༲), LIU X J (݅䰗∮), et al.   Technology, 2021, 213: 108949.
                 Research progress of intrinsic high temperature resistant polyimide   [28]  SONG N N, YAO  H Y, MA  T  N,  et al. Decreasing the dielectric
                 energy storage dielectrics[J]. High Voltage Technology (倅⩢ࢸឭ  constant and water uptake by introducing hydrophobic cross-linked
                 ᱜ), 2021, 47(5): 1759-1770.                       networks into co-polyimide films[J]. Applied Surface Science, 2019,
            [10]  LI Q,  CHEN L, GASINSKI M R, et  al. Flexible high-temperature   480: 990-997.
                 dielectric materials from polymer nanocomposites[J]. Nature, 2015,   [29]  WEI R B, TU L, YOU Y, et al. Fabrication of cross-linked single-
                 523(7562): 576-579.
            [11]  ZHANG Y, LIU Z, ZHU L X, et al. Enhanced discharged efficiency   component polyarylene ether nitrile composite with enhanced dielectric
                 and high energy density at elevated temperature in polymer dielectric      properties[J]. Polymer, 2019, 161: 162-169.
   160   161   162   163   164   165   166   167   168   169   170