Page 165 - 《精细化工》2023年第4期
P. 165
す 4 ⃢ᎬႴ喑ぶ: ಸϑ㖁㖇䛇䚝χ㘧⩢ϸ䉕⮱ݣิࣷו㘪➦ᕔ g851g
3
3
হ 2.10 J/cm Вࣷੳ⩕ BOPP喍2.1 J/cm 喑70 Ď喎ȡ̷ via manipulating relaxation behavior[J]. CCS Chemistry, 2020, 2(5):
1169-1177.
䔝㐀㶕ᬻ喑ᄳϑ㖁㐀Ჱᑂڒݝ㖇䛇䚝χ㘧͚㘪์ [12] YOU Y, LIU S N, TU L, et al. Controllable fabrication of
ᩦڣౕც⍖ഌ㠰డڲ⮱ו㘪➦ᕔ喑␎䋠ᰡ倅⣜ධ poly(arylene ether nitrile) dielectrics for thermal-resistant film
⍖Ꮣ⮱Ҭ⩕㺮Ⅿȡ capacitors[J]. Macromolecules, 2019, 52(15): 5850-5859.
[13] QIAO W Q (᪴ᑧ). Synthesis and properties of polyimides derived
from m-xylylenediamine monomer[J]. Fine Chemicals (㏳ࡃጒ),
3 㐀䃧 2022, 39(6): 1141-1147.
[14] SHEN Z H (↵ᔍᚔ), JIANG Y D (ᒓ䓫), LI B W (ᱻ᪴), et al.
᱙᪴В TAP ͧϑ㖁ݯ喑䛴⩕ٵϑ㖁ऻ⣜ࡃ⮱ Research progress of high energy storage density ferroelectric
polymer nanocomposites[J]. Acta Physica Sinica (➖⤳႓្), 2020,
∂ݣิγಸϑ㖁㖇䛇䚝χ㘧⩢ϸ䉕ᱽ᫆喑Ꭳⵁ⾣ 69(21): 13-19.
γڣϸ⩢ᕔ㘪̺ࣷह⍖Ꮣ̸⮱ו㘪➦ᕔ喑ͨ㺮㐀䃧 [15] SHAO L, CHUNG T S, GOH S H, et al. Polyimide modification by a
linear aliphatic diamine to enhance transport performance and
ຯ̸喟 plasticization resistance[J]. Journal of Membrane Science, 2005,
喍1喎ϑ㖁㐀Ჱᰶߖλᩦ㖇䛇䚝χ㘧⩢ϸ䉕ᱽ 256(1/2): 46-56.
᫆⮱ܨ⾬ᑧᏓ喑Ⱕ䒰λ᱗ϑ㖁㖇䛇䚝χ㘧喑TAP क़ [16] ZHANG T, CHEN X, THAKUR Y, et al. A highly scalable dielectric
metamaterial with superior capacitor performance over a broad
䛼ͧ 2.0%⮱ϑ㖁㖇䛇䚝χ㘧⮱ܨ⾬ᑧᏓࡴ㜠 temperature[J]. Science Advances, 2020, 6(4): eaax6622.
399.4 MV/mȡ [17] WU X D, LIU Y, LI X T, et al. Atomic layer deposition coated
polymer films with enhanced high-temperature dielectric strength
喍2喎ݣิϑ㖁㖇䛇䚝χ㘧⩢ϸ䉕ᱽ᫆⮱倅⍖ suitable for film capacitor[J]. Surfaces and Interfaces, 2022, 28: 101686.
ו㘪➦ᕔхλ᱗ϑ㖁㖇䛇䚝χ㘧喠ᒀ TAP क़䛼ͧ [18] DUAN G Y (⃢ᎬႴ), HU J W (㘎䲆᪴), HU Z M (㘎⺃ᬻ), et al.
Influence of BaTiO 3 nanowire aspect ratio on dielectric property of
2.0%ᬣ喑ϑ㖁㖇䛇䚝χ㘧ౕ 150 Ďᬣ⮱ᰭ๔ U d poly(m-phenyleneisophthalamide) composite[J]. Chinese Journal of
3
ࡴ㜠 2.53 J/cm ȡ Materials Research (ᱽ᫆ⵁ⾣႓្), 2022, 36(7): 527-535.
[19] LIU J, ZHANG Y, WANG Z Y, et al. Optimizing electric field
喍3喎ᄳϑ㖁㐀Ჱᑂڒݝ㖇䛇䚝χ㘧⩢ϸ䉕ᱽ᫆
distribution via tuning cross-linked point size for improving the
͚㘪์ᰶ᩵䭺ѻ㖇व➖⩢ϸ䉕ᱽ᫆倅⍖̸⮱⩢≮ dielectric properties of polymer nanocomposites[J]. Nanoscale, 2020,
ჳᏓ喑ᩦ㖇व➖⩢ϸ䉕ᱽ᫆⮱倅⍖ו㘪➦ᕔ喑ͧ 12(23): 12416-12425.
[20] DUAN G Y (⃢ᎬႴ), LI Y (ᱻ⣒), HU J W (㘎䲆᪴), et al. Preparation
ݣิ倅⍖㖇व➖⩢ϸ䉕ӈγᕊ䌜ȡ and properties of high-temperature poly(metaphenyleneisophthalamide)
dielectric composites[J]. Materials Reports (ᱽ᫆ᄩ្), 2022, 36(4):
࣯㔰᪴⡛喟 233-238.
[21] LIU X J, ZHENG M S, CHEN G, et al. High-temperature polyimide
[1] FENG Q K, ZHONG S L, PEI J Y, et al. Recent progress and future dielectric materials for energy storage: Theory, design, preparation
prospects on all-organic polymer dielectrics for energy storage and properties[J]. Energy & Environmental Science, 2022, 15: 56-81.
capacitors[J]. Chemical Reviews, 2021, 122(3): 3820-3878.
[2] WU X, CHEN X, ZHANG Q M, et al. Advanced dielectric polymers [22] HUAN T D, BOGGS S, TEYSSEDRE G, et al. Advanced polymeric
for energy storage[J]. Energy Storage Materials, 2022, 44: 29-47. dielectrics for high energy density applications[J]. Progress in
[3] FAN B H, ZHOU M Y, ZHANG C, et al. Polymer-based materials Materials Science, 2016, 83: 236-269.
for achieving high energy density film capacitors[J]. Progress in [23] DUAN G Y (⃢ᎬႴ), HU F Y (㘎ܑ㠞), HU Z M (㘎⺃ᬻ), et al.
Polymer Science, 2019, 97: 101143. Preparation and thermal conductivity of barium titanate-boron nitride/
[4] DONG J F (㦐Ͳ䨸), DENG X L (䗀ᭌⷷ), NIU Y J (➈⢶ཌ), et al. poly(m-phenylenesophthalamide) dielectric composites[J]. Acta
Research progress of polymer based dielectrics for high-temperature Materiae Compositae Sinica (ฺवᱽ᫆႓្), 2022, 39(3): 1079-1090.
capacitor energy storage[J]. Acta Physica Sinica (➖⤳႓្), 2020, [24] DAI Z H, LI T, GAO Y, et al. Achieving high dielectric permittivity,
69(21): 43-58. high breakdown strength and high efficiency by cross-linking of
[5] LI Q (ᱻ⥓), LI M Q (ᱻᰩ㡉). Review and prospect of high poly(vinylidene fluoride)/BaTiO 3 nanocomposites[J]. Composites
temperature polymer film capacitor dielectric materials[J]. High Science and Technology, 2019, 169: 142-150.
Voltage Technology (倅⩢ࢸឭᱜ), 2021, 47(9): 19-25. [25] MA R, BALDWIN A F, WANG C C, et al. Rationally designed
[6] ZHA J W, ZHENG M S, FAN B H, et al. Polymer-based dielectrics polyimides for high-energy density capacitor applications[J]. ACS
with high permittivity for electric energy storage: A review[J]. Nano
Energy, 2021, 89: 106438. Applied Materials & Interfaces, 2014, 6(13): 10445-10451.
[7] LIU J G (݅䛾݇), ZHANG X M (ᑍ⻭᩼), TIAN F Q (⩝Ѕᑧ) , et al. [26] QIAO R, WANG C, CHEN S, et al. High-temperature dielectric
Recent progress of research and development for high-temperature polymers with high breakdown strength and energy density via
resistant polymer dielectrics[J]. Transactions of China Electrotechnical constructing the electron traps in blends[J]. Composites Part A:
Society (⩢ጒឭᱜ႓្), 2017, 32(16): 14-24. Applied Science and Manufacturing, 2022, 152: 106679.
[8] TANG Y D, XU W H, NIU S, et al. Cross-linked dielectric materials [27] JIN L, LIU J, ZHU L X, et al. Cross-linked poly(aryl ether ketone)/
for high-temperature capacitive energy storage[J]. Journal of Materials boron nitride nanocomposites containing a stable chemical bonding
Chemistry A, 2021, 9(16): 10000-10011. structure as high temperature dielectrics[J]. Composites Science and
[9] ZHA J W (ᴒӷь), TIAN Y Y (⩝༲༲), LIU X J (݅䰗∮), et al. Technology, 2021, 213: 108949.
Research progress of intrinsic high temperature resistant polyimide [28] SONG N N, YAO H Y, MA T N, et al. Decreasing the dielectric
energy storage dielectrics[J]. High Voltage Technology (倅⩢ࢸឭ constant and water uptake by introducing hydrophobic cross-linked
ᱜ), 2021, 47(5): 1759-1770. networks into co-polyimide films[J]. Applied Surface Science, 2019,
[10] LI Q, CHEN L, GASINSKI M R, et al. Flexible high-temperature 480: 990-997.
dielectric materials from polymer nanocomposites[J]. Nature, 2015, [29] WEI R B, TU L, YOU Y, et al. Fabrication of cross-linked single-
523(7562): 576-579.
[11] ZHANG Y, LIU Z, ZHU L X, et al. Enhanced discharged efficiency component polyarylene ether nitrile composite with enhanced dielectric
and high energy density at elevated temperature in polymer dielectric properties[J]. Polymer, 2019, 161: 162-169.