Page 19 - 《精细化工》2023年第4期
P. 19

す 4 ᱌                 㟼   ᐧ喑ぶ:  ➦₷㐀ᲱȠ倅⽠Ⴧᕔ⩢㼐⊤Ⅱ OER יࡃݯ⮱ⵁ⾣䔈ᆂ                               g705g


            [4]   BIAN C, ZHANG R, DONG L, et al. Hydrogen/methane production   [23]  KUANG Y, KENNEY M J, MENG Y T, et al. Solar-driven, highly
                 from supercritical water gasification of lignite coal with plastic waste   sustained splitting of seawater into hydrogen and  oxygen fuels[J].
                 blends[J]. Energy & Fuels, 2020, 34(9): 11165-11174.   Proceedings of the National Academy of Sciences of the United
            [5]   SIMOES S G, CATARINO J, PICADO A, et al. Water availability   States of America, 2019, 116: 6624-6629.
                 and water usage solutions for electrolysis in hydrogen production[J].   [24]  ABDEL  G, KUMAGAI N, MEGURO S,  et al. Oxygen  evolution
                 Journal of Cleaner Production, 2021, 315: 128124.   anodes composed  of anodically deposited Mn-Mo-Fe oxides  for
            [6]   GUO T, XO X J, WANG X K, et al. Enabling the full exposure of   seawater electrolysis[J]. Electrochimica Acta, 2002, 48: 21-28.
                 Fe 2P@Ni xP heterostructures in tree-branch-like nanoarrays for   [25]  CHENG F F, FENG X L, CHEN X, et al. Synergistic action of Co-Fe
                 promoted urea electrolysis at high current densities[J]. Chemical   layered double hydroxide electrocatalyst and multiple ions of sea salt
                 Engineering Journal, 2021, 417: 128067.           for efficient seawater oxidation at near-neutral pH[J]. Electrochimica
            [7]   GAO J X,  ZHANG Y J, WANG  X K,  et al. Nitrogen-doped   Acta, 2017, 251: 336-343.
                 Sr 2Fe 1.5Mo 0.5O 6–į perovskite as an efficient and stable catalyst for   [26]  SURENDRANATH Y, DINCA  M, NOCERA D  G,  et al.
                 hydrogen evolution reaction[J]. Mater Today Energy, 2021, 20:   Electrolyte-dependent electrosynthesis  and activity of cobalt-based
                 100695.                                           water oxidation catalysts[J]. Journal  of the American  Chemical
            [8]   JIN H Y, LIU X, VASILEFF A, et al. Single-crystal nitrogen-rich 2D   Society, 2009, 131: 2615-2620.
                 Mo 5N 6 nanosheets for efficient and stable seawater splitting[J]. ACS   [27]  ZHENG J J. Pt-free NiCo electrocatalysts for oxygen evolution by
                 Nano, 2018, 12: 12761-12769.                      seawater splitting[J]. Electrochimica Acta, 2017, 247: 381-391.
            [9]   LIU G B, WANG M, XU Y S, et al. Porous CoP/Co 2P heterostructure   [28]  HSU S H, MIAO J  W, ZHANG  L P,  et al. An  earth-abundant
                 for efficient hydrogen evolution and application in magnesium/   catalyst-based seawater photoelectrolysis system with 17.9% solar-
                 seawater battery[J]. Journal of Power Sources, 2021, 486(28):   to-hydrogen efficiency[J]. Advanced Materials, 2018, 30: 1707261.
                 229351.                                       [29]  KO J S, JOHNSON J K, JOHNSON P I, et al. Decoupling oxygen
            [10]  MIAO J W, XIAO F X, HONG B Y,  et al. Hierarchical Ni-Mo-S   and chlorine evolution reactions  in seawater using iridium-based
                 nanosheets on carbon fiber cloth: A flexible electrode for efficient   electrocatalysts[J]. Chemcatchem, 2020, 12: 4526-4532.
                 hydrogen generation in neutral electrolyte[J]. Science  Advances,   [30]  CHANG J F, WANG G  Z, YANG  Z Z,  et al. Dual-doping and
                 2015, 1(7): 1500259.                              synergism toward high-performance seawater electrolysis[J]. Advanced
            [11]  CHEN G B,  WANG  T, ZHANG J, et al. Accelerated  hydrogen   Materials, 2021, 33(33): 2101425.
                 evolution kinetics on NiFe-layered double hydroxide electrocatalysts   [31]  XU  Y S, LV H H, LU H S,  et al.  Mg/seawater batteries driven
                 by tailoring water dissociation active sites[J]. Advanced Materials,   self-powered direct seawater  electrolysis systems for hydrogen
                 2018, 30: 1706279.                                production[J]. Nano Energy, 2022, 98: 107295.
            [12]  ZHUANG L Z, GE L, YANG Y S, et al. Ultrathin iron-cobalt oxide   [32]  ZHANG L,  HU  S Y, YANG L  L,  et al. H 2 activation by
                 nanosheets with abundant oxygen vacancies for the oxygen evolution   heterobimetallic gold ( ē )/platinum (0) complex:  Theoretical
                 reaction[J]. Advanced Materials, 2017, 29: 1606793.   understanding of electronic processes and prediction on more active
            [13]  HAN M, WANG N, ZHANG B, et al. High-valent nickel promoted   species[J]. The Journal  of  Physical Chemistry C, 2020, 124(8):
                 by atomically embedded copper for efficient water oxidation[J]. ACS   4525-4533.
                 Catalysis, 2020, 10: 9725-9734.               [33]  SEH Z W, KIBSGAARD J, DICKENS C F, et al. Combining theory
            [14]  YU L, WU L B, MCELHENNY B, et al. Ultrafast room-temperature   and experiment in electrocatalysis: Insights into materials design[J].
                 synthesis of porous S-doped Ni/Fe (oxy) hydroxide electrodes  for   Science, 2017, 355: 6321.
                 oxygen evolution catalysis in seawater splitting[J]. Energy &   [34]  XU W  C, WANG H  X.  Earth-abundant amorphous catalysts for
                 Environmental Science, 2020, 13: 3439-3446.       electrolysis of water[J]. Chinese Journal of Catalysis, 2017, 38(6):
            [15]  ZHU  C L, YIN Z X, LAI W H,  et al. Fe-Ni-Mo  nitride porous   991-1005.
                 nanotubes for full water splitting and Zn-air batteries[J]. Advanced   [35]  CAO X M, FAN R, ZHOU J, et al. NiMoFe/Cu nanowire core-shell
                 Energy Materials, 2018, 8: 1802327.               catalysts for high-performance overall water splitting in neutral
            [16]  YANG S, CHEN  G B, RICCIARDULLI A G,  et al. Topochemical   electrolytes[J]. Chemical Communications, 2022, 58: 1569-1572.
                 synthesis of two  dimensional transition-metal phosphides using   [36]  LIU J, WANG J S, ZHANG  B,  et al. Hierarchical NiCo 2S 4@NiFe
                 phosphorene templates[J]. Angewandte Chemie International Edition,   LDH heterostructures supported on nickel foam for enhanced
                 2020, 59: 465-470.                                overall-water-splitting activity[J]. American Chemical Society, 2017,
            [17]  ZHAO Y Q, JIN B, ZHENG Y, et al. Charge state manipulation of   9: 15364-15372.
                 cobalt selenide catalyst for overall seawater electrolysis[J]. Advanced   [37]  XIAO X, WANG  X K, JIANG X  X,  et al. In situ  growth of Ru
                 Energy Materials, 2018, 8(29): 1801926.           nanoparticles on (Fe,Ni)(OH) 2 to boost hydrogen evolution activity at
            [18]  VOS J G, LIU Z C, SPECK F D, et al. Selectivity trends between   high current density in alkaline media[J]. Small Methods, 2020, 4:
                 oxygen evolution and chlorine evolution on iridium-based double   1900796.
                 perovskites in acidic media[J]. ACS Catalysis, 2019, 9: 8561-8574.   [38]  YU L, WU  L B,  SONG S W,  et al. Hydrogen generation  from
            [19]  DIONIGI F, REIER T, PAWOLEK Z, et al. Design criteria, operating   seawater electrolysis over a sandwich-like NiCoN|Ni xP|NiCoN
                 conditions, and nickel-iron hydroxide catalyst materials for selective   microsheet  array  catalyst[J]. ACS  Energy Letters, 2020, 5(8):
                 seawater electrolysis[J]. ChemSusChem, 2016, 9: 962-972.   2681-2689.
            [20]  SONG Y R, JIANG G M, CHEN Y, et al. Effects of chloride ions on   [39]  ABE H,  TAMIE  K, HEISHI M,  et al. Thin  film coating  of Mg-
                 corrosion of ductile iron and carbon steel in soil environments[J].   intercalated layered MnO 2 to suppress chlorine evolution at an IrO 2
                 Scientific Reports, 2017, 7: 6865.                anode in cathodic protection[J]. Electrocatalysis, 2019, 10: 195-202.
            [21]  YU L, ZHOU Q, SONG S W, et al. Non-noble metal-nitride based   [40]  VOS J G, WEZENDONK T A, JEREMIASSE A, et al. MnO x/IrO x as
                 electrocatalysts for high-performance  alkaline seawater electrolysis   selective oxygen evolution electrocatalyst in acidic chloride solution
                 [J]. Nature Communications, 2019, 10: 5106.       [J]. Journal of the American  Chemical Society, 2018, 140: 10270-
            [22]  YU L, WU  L B,  SONG S W,  et al. Hydrogen generation  from   10281.
                 seawater electrolysis over a sandwich-like NiCoN|Ni xP|NiCoN microsheet
                 array catalyst[J]. ACS Energy Letters, 2020, 5: 2681-2689.                   喍̸䒙す 716 䶢喎
   14   15   16   17   18   19   20   21   22   23   24