Page 19 - 《精细化工》2023年第4期
P. 19
す 4 㟼 ᐧ喑ぶ: ➦₷㐀ᲱȠ倅⽠Ⴧᕔ⩢㼐⊤Ⅱ OER יࡃݯ⮱ⵁ⾣䔈ᆂ g705g
[4] BIAN C, ZHANG R, DONG L, et al. Hydrogen/methane production [23] KUANG Y, KENNEY M J, MENG Y T, et al. Solar-driven, highly
from supercritical water gasification of lignite coal with plastic waste sustained splitting of seawater into hydrogen and oxygen fuels[J].
blends[J]. Energy & Fuels, 2020, 34(9): 11165-11174. Proceedings of the National Academy of Sciences of the United
[5] SIMOES S G, CATARINO J, PICADO A, et al. Water availability States of America, 2019, 116: 6624-6629.
and water usage solutions for electrolysis in hydrogen production[J]. [24] ABDEL G, KUMAGAI N, MEGURO S, et al. Oxygen evolution
Journal of Cleaner Production, 2021, 315: 128124. anodes composed of anodically deposited Mn-Mo-Fe oxides for
[6] GUO T, XO X J, WANG X K, et al. Enabling the full exposure of seawater electrolysis[J]. Electrochimica Acta, 2002, 48: 21-28.
Fe 2P@Ni xP heterostructures in tree-branch-like nanoarrays for [25] CHENG F F, FENG X L, CHEN X, et al. Synergistic action of Co-Fe
promoted urea electrolysis at high current densities[J]. Chemical layered double hydroxide electrocatalyst and multiple ions of sea salt
Engineering Journal, 2021, 417: 128067. for efficient seawater oxidation at near-neutral pH[J]. Electrochimica
[7] GAO J X, ZHANG Y J, WANG X K, et al. Nitrogen-doped Acta, 2017, 251: 336-343.
Sr 2Fe 1.5Mo 0.5O 6–į perovskite as an efficient and stable catalyst for [26] SURENDRANATH Y, DINCA M, NOCERA D G, et al.
hydrogen evolution reaction[J]. Mater Today Energy, 2021, 20: Electrolyte-dependent electrosynthesis and activity of cobalt-based
100695. water oxidation catalysts[J]. Journal of the American Chemical
[8] JIN H Y, LIU X, VASILEFF A, et al. Single-crystal nitrogen-rich 2D Society, 2009, 131: 2615-2620.
Mo 5N 6 nanosheets for efficient and stable seawater splitting[J]. ACS [27] ZHENG J J. Pt-free NiCo electrocatalysts for oxygen evolution by
Nano, 2018, 12: 12761-12769. seawater splitting[J]. Electrochimica Acta, 2017, 247: 381-391.
[9] LIU G B, WANG M, XU Y S, et al. Porous CoP/Co 2P heterostructure [28] HSU S H, MIAO J W, ZHANG L P, et al. An earth-abundant
for efficient hydrogen evolution and application in magnesium/ catalyst-based seawater photoelectrolysis system with 17.9% solar-
seawater battery[J]. Journal of Power Sources, 2021, 486(28): to-hydrogen efficiency[J]. Advanced Materials, 2018, 30: 1707261.
229351. [29] KO J S, JOHNSON J K, JOHNSON P I, et al. Decoupling oxygen
[10] MIAO J W, XIAO F X, HONG B Y, et al. Hierarchical Ni-Mo-S and chlorine evolution reactions in seawater using iridium-based
nanosheets on carbon fiber cloth: A flexible electrode for efficient electrocatalysts[J]. Chemcatchem, 2020, 12: 4526-4532.
hydrogen generation in neutral electrolyte[J]. Science Advances, [30] CHANG J F, WANG G Z, YANG Z Z, et al. Dual-doping and
2015, 1(7): 1500259. synergism toward high-performance seawater electrolysis[J]. Advanced
[11] CHEN G B, WANG T, ZHANG J, et al. Accelerated hydrogen Materials, 2021, 33(33): 2101425.
evolution kinetics on NiFe-layered double hydroxide electrocatalysts [31] XU Y S, LV H H, LU H S, et al. Mg/seawater batteries driven
by tailoring water dissociation active sites[J]. Advanced Materials, self-powered direct seawater electrolysis systems for hydrogen
2018, 30: 1706279. production[J]. Nano Energy, 2022, 98: 107295.
[12] ZHUANG L Z, GE L, YANG Y S, et al. Ultrathin iron-cobalt oxide [32] ZHANG L, HU S Y, YANG L L, et al. H 2 activation by
nanosheets with abundant oxygen vacancies for the oxygen evolution heterobimetallic gold ( ē )/platinum (0) complex: Theoretical
reaction[J]. Advanced Materials, 2017, 29: 1606793. understanding of electronic processes and prediction on more active
[13] HAN M, WANG N, ZHANG B, et al. High-valent nickel promoted species[J]. The Journal of Physical Chemistry C, 2020, 124(8):
by atomically embedded copper for efficient water oxidation[J]. ACS 4525-4533.
Catalysis, 2020, 10: 9725-9734. [33] SEH Z W, KIBSGAARD J, DICKENS C F, et al. Combining theory
[14] YU L, WU L B, MCELHENNY B, et al. Ultrafast room-temperature and experiment in electrocatalysis: Insights into materials design[J].
synthesis of porous S-doped Ni/Fe (oxy) hydroxide electrodes for Science, 2017, 355: 6321.
oxygen evolution catalysis in seawater splitting[J]. Energy & [34] XU W C, WANG H X. Earth-abundant amorphous catalysts for
Environmental Science, 2020, 13: 3439-3446. electrolysis of water[J]. Chinese Journal of Catalysis, 2017, 38(6):
[15] ZHU C L, YIN Z X, LAI W H, et al. Fe-Ni-Mo nitride porous 991-1005.
nanotubes for full water splitting and Zn-air batteries[J]. Advanced [35] CAO X M, FAN R, ZHOU J, et al. NiMoFe/Cu nanowire core-shell
Energy Materials, 2018, 8: 1802327. catalysts for high-performance overall water splitting in neutral
[16] YANG S, CHEN G B, RICCIARDULLI A G, et al. Topochemical electrolytes[J]. Chemical Communications, 2022, 58: 1569-1572.
synthesis of two dimensional transition-metal phosphides using [36] LIU J, WANG J S, ZHANG B, et al. Hierarchical NiCo 2S 4@NiFe
phosphorene templates[J]. Angewandte Chemie International Edition, LDH heterostructures supported on nickel foam for enhanced
2020, 59: 465-470. overall-water-splitting activity[J]. American Chemical Society, 2017,
[17] ZHAO Y Q, JIN B, ZHENG Y, et al. Charge state manipulation of 9: 15364-15372.
cobalt selenide catalyst for overall seawater electrolysis[J]. Advanced [37] XIAO X, WANG X K, JIANG X X, et al. In situ growth of Ru
Energy Materials, 2018, 8(29): 1801926. nanoparticles on (Fe,Ni)(OH) 2 to boost hydrogen evolution activity at
[18] VOS J G, LIU Z C, SPECK F D, et al. Selectivity trends between high current density in alkaline media[J]. Small Methods, 2020, 4:
oxygen evolution and chlorine evolution on iridium-based double 1900796.
perovskites in acidic media[J]. ACS Catalysis, 2019, 9: 8561-8574. [38] YU L, WU L B, SONG S W, et al. Hydrogen generation from
[19] DIONIGI F, REIER T, PAWOLEK Z, et al. Design criteria, operating seawater electrolysis over a sandwich-like NiCoN|Ni xP|NiCoN
conditions, and nickel-iron hydroxide catalyst materials for selective microsheet array catalyst[J]. ACS Energy Letters, 2020, 5(8):
seawater electrolysis[J]. ChemSusChem, 2016, 9: 962-972. 2681-2689.
[20] SONG Y R, JIANG G M, CHEN Y, et al. Effects of chloride ions on [39] ABE H, TAMIE K, HEISHI M, et al. Thin film coating of Mg-
corrosion of ductile iron and carbon steel in soil environments[J]. intercalated layered MnO 2 to suppress chlorine evolution at an IrO 2
Scientific Reports, 2017, 7: 6865. anode in cathodic protection[J]. Electrocatalysis, 2019, 10: 195-202.
[21] YU L, ZHOU Q, SONG S W, et al. Non-noble metal-nitride based [40] VOS J G, WEZENDONK T A, JEREMIASSE A, et al. MnO x/IrO x as
electrocatalysts for high-performance alkaline seawater electrolysis selective oxygen evolution electrocatalyst in acidic chloride solution
[J]. Nature Communications, 2019, 10: 5106. [J]. Journal of the American Chemical Society, 2018, 140: 10270-
[22] YU L, WU L B, SONG S W, et al. Hydrogen generation from 10281.
seawater electrolysis over a sandwich-like NiCoN|Ni xP|NiCoN microsheet
array catalyst[J]. ACS Energy Letters, 2020, 5: 2681-2689. 喍̸䒙す 716 䶢喎