Page 215 - 《精细化工》2023年第4期
P. 215

す 4 ᱌                       Ვ⦸ۈ喑ぶ:  ⻨ၽ㛉⩢㼐∂ݣิ⅜䛾䚥ࣷڣᱧ⤳ᣏ⾣                                    g901g


            ࣯㔰᪴⡛喟                                                  electrochemical dissolution and passivation of gold during
                                                                   cyanidation in presence of sulphides and oxides[J]. Hydrometallurgy,
            [1]   PENG J D (ᒚ᪙͉), LIU S P (݅㏺⧋), LIU Z F (݅ᔍ㟠), et al.   2017, 172: 30-44.
                 Resonance rayleigh scattering spectra of chloroauric acid berberine   [12]  MIRNONV I V,  KHARLAMOVA  V Y. Gold(ĕ) chlorohydroxo
                 ion association system  and its analytical application[J]. Journal of   complexes in aqueous solutions at increased temperatures[J]. Russian
                 Chemistry (ࡃ႓႓្), 2005, 63(8): 745-751.           Journal of Inorganic Chemistry, 2020, 65(3): 420-425.
            [2]   SHEN X J (⩠ᄼཌ), CHEN  L (䭵⣟), ZHONG M (䧌᩼),  et al.   [13]  XIONG X G, WANG Y L, XU  C  Q,  et al. On the  gold-ligand
                 Effect of gold particle doping on performance of organic silicon   covalency in linear [AuX 2]  complexes[J]. Dalton Transactions,
                                                                                     í
                 photovoltaic cells[J]. Fine Chemicals (㇫㏳ࡃጒ), 2018, 35(3):   2015, 44: 5535-5546.
                 449-455.                                      [14]  SACRE N, FARAL M, DOLLE M, et al. Hydrogen depolarized ano
            [3]   HUANG L H (叱⹩♹). Gold and silver extraction technology[M].   des with liquid anolyte: Proof of concept[J]. Electrocatalysis, 2022,
                 Beijing: Metallurgical Industry Press (ۣ䛾ጒ͇ܧ❵⹫), 2001.     13: 139-153.
            [4]   EVGENY A K, YURY D A, ANNA V G, et al. Preparation of gold   [15]  ZHENG S (䗾㇌), WANG Y Y (⢸ξ✂),  CHAI L Y  (ᴡ⿸ٰ).
                 nanoparticles  via  direct interaction  of tetrachloroauric acid with   Selective gold dissolution mechanism of alkaline thiourea based on
                 DNA[J]. Colloid and Polymer Science, 2018, 297: 433-444.     coordination theory[J].  The Chinese Journal of Nonferrous Metals
            [5]   LI Y (ᱻ䚪), SONG S D (Ⴘࣹࢂ), LIN X (᳄ᰓ), et al. Preparation     (͚పᰶ㞟䛾ᆋ႓្), 2005, 15(10): 1629-1635.
                 and photocatalytic activity of Au modified nano ZnO by ultrasonic   [16]  EEVA H, HENRI L,  MIKKO  M,  et al. Cooperative ligands in
                 chemical  method[J]. Fine Chemicals (㇫㏳ࡃጒ), 2021, 38(8):   dissolution of gold[J].  Chemistry ÿ A European Journal, 2021,
                 1597-1603.                                        27(34): 8668-8872.
            [6]   LIU M  X (݅䅌⻔). Comparison and prospect of cyanidation,   [17]  GANGOPADHAYAY A,  CHAKRAVORTY  A. Charge transfer
                 thiourea and water chlorination[J]. Gold, 1989, 10(4): 25-27.     spectra of some gold(ĕ) complexes[J]. Journal of Chemical Physics,
            [7]   LI X (ᱻ䦘), LI  Z (ᱻᔍ), WEI L  F (䴓ݖ下),  et al. Research   1961, 35(6): 2206-2209.
                 progress  of dehumidification materials[J]. Chemical Industry and   [18]  YANG X Y, MOATS M S, MILLER J D. Gold dissolution in acidic
                 Engineering Progress (ࡃጒ䔈ᆂ), 2004, 23(8): 811-815.     thiourea and thiocyanate solutions[J]. Electrochimica Acta, 2010, 55:
            [8]   ZHEN Y J (䗾䯲Ო), GUO W (䘚ь), BAI M (⮪⡈),  et al.   3643-3649.
                 Preparation and thermal decomposition of chloroauric acid[J].  The   [19]  CHAI L Y, WANG Y Y. Mechanism of gold dissolving in alkaline
                 Chinese Journal of Nonferrous Metals (͚పᰶ㞟䛾ᆋ႓្), 2006,   thiourea solution[J]. Journal of Central South University, 2007, 14:
                 16(11): 1796-1802.                                485-489.
            [9]   OYA K, AOSHIKA K, AGEISHI M, et al. Synthesis of chloroauric   [20]  LAMPINEN M, SEISKO O, FORFFTROM O, et al. Mechanism and
                 acid from gold electrodes in alkali  halide salt solution by AC   kinetics of gold leaching by cupric chloride[J]. Hydrometallurgy,
                 electrolysis and the sequential formation of gold nanoparticles by   2017, 169: 103-111.
                 Turkevich method[J]. Chemistry Letters, 2021, 50(1): 191-194.     [21]  DIVINO S R, ERIKA R L. Electrochemical study on
            [10]  DEAN J A.  Lancaster handbook  of chemistry[M]. 2nd Edition,   electrodissolution  of gold in acidic  medium using chlorides as
                 Beijing: Science Press (⻾႓ܧ❵⹫), 2003.             ligands[J]. Journal  of the Electrochemical Society, 2017, 164(14):
            [11]  AHMET  D B,  EDWARD G, YEONUK C. A review on     994-1002.




            喍̷ᣒす 886 䶢喎                                        [25]  OWEN G J, LESMES U, DUBIN P, et al. Effect of polysaccharide
                                                                   charge on formation and properties of biopolymer nanoparticles
            [17]  REN X M (Шᮀ卐). Preparation of zein or corn peptides composite   created by heat treatment of ȕ-lactoglobulin-pectin complexes[J]. Food
                 nanoparticles and its delivery and antioxidant properties[D].   Hydrocolloids, 2010, 24(4): 374-383.
                 Guangzhou: South China University of Technology (ࡻࢄ⤳ጒ๔႓),   [26]  WANG D  Y, LI H J, CHEN X,  et al.  Fabricating of grape  seed
                 2014.                                             proanthocyanins loaded zein-nacas composite nanoparticles to exert
            [18]  ZOU Y, GUO J, YIN S W, et al. Pickering emulsion gels prepared by   effective inhibition of Q235 steel corrosion in seawater[J]. Journal of
                 hydrogen-bonded zein/tannic acid complex colloidal particles[J].   Molecular Liquids, 2022, 348(19): 118467.
                 Journal  of  Agricultural and Food Chemistry, 2015, 63(33):   [27]  MELANDER W, HORVATH C.  Salt effect on hydrophobic
                 7405-7414.                                        interactions in precipitation and chromatography of  proteins an
            [19]  WEI Y, YANG S F, ZHANG L, et al. Fabrication, characterization,   interpretation of the lyotropic series[J]. Archives of Biochemistry &
                 and in vitro  digestion of food grade complex nanoparticles for   Biophysics, 1997, 183(1): 200-215.
                 co-delivery of resveratrol and coenzyme Q10[J]. Food Hydrocolloids,   [28]  LUO Y C, WANG T T, TENG Z, et al. Encapsulation of indole-3-
                 2020, 105: 105791.                                carbinol and 3,3'-diindolylmethane in zein/carboxymethyl chitosan
            [20]  GUAN J J (ノۈۈ), QIU  A Y (㸅❞∠), LIU X Y (݅ᮀχ).   nanoparticles with controlled release property and improved
                 Structural characterization of soy protein-saccharide grafts   stability[J]. Food Chemistry, 2013, 139: 224-230.
                 synthesized by microwave[J]. Food Science and Technology (丌৮⻾  [29]  WANG G J (⢸ప侱), GAN B Z (⩅ќ͚), WEN P C (᪴卼⼸), et al.
                 ឭ), 2010, 35(2): 120-126.                         Effects of  heat treatment and pH-induced on  some functional
            [21]  HU S Q, WANG T R, FERNANDEZ M L,  et al. Development of   properties of yak casein[J]. Journal of Gansu Agricultural University
                 tannic acid cross-linked  hollow zein nanoparticles as  potential oral   (⩅㖰ۉ͇๔႓႓្), 2013, 48(1): 129-134.
                 delivery vehicles for curcumin[J]. Food Hydrocolloids,  2016, 61:   [30] FAN  Y  K  (ἷⅥᏤ). Study on the preparation characterization and
                 821-831.                                          properties of quercetin-loaded glycosylated casein nanoparticles[D].
            [22]  PATEL A R, HEUSSEN P, HAZEKAMP J, et al. Quercetin loaded   Hangzhou: Zhejiang University (⊆↌๔႓), 2020.
                 biopolymeric colloidal  particles  prepared by simultaneous   [31] YU  Y  ( λ䧝 ).  Preparation and application of self-assembled
                 precipitation of quercetin  with hydrophobic  protein in  aqueous   nanoparticles based on casein using ultrasonic mehtod[D]. Qingdao:
                 medium[J]. Food Chemistry, 2012, 133(2): 423-429.     Ocean University of China (͚ప⊤∸๔႓), 2012.
            [23]  LI J X ( ᱻҠ ⁐ ). Preparation  and performance  of keratin   [32]  XUE J L, ZHANG Y  Q, HUANG G R, et al. Zein-caseinate
                 nanoparticles as drug carriers[D]. Dalian: Dalian University of   composite nanoparticles for bioactive delivery using curcumin as a
                 Technology (๔䔋⤳ጒ๔႓), 2021.                        probe compound[J]. Food Hydrocolloids, 2018, 83: 25-35.
            [24]  HU K, HUANG  X X, GAO Y Q,  et al. Core-shell biopolymer   [33]  LIU Q G, JING Y Q, HAN C P, et al. Encapsulation of curcumin in
                 nanoparticle delivery systems: Synthesis and characterization of   zein/caseinate/sodium alginate nanoparticles with  improved
                 curcumin fortified zein-pectin nanoparticles[J]. Food  Chemistry,   physicochemical  and controlled release properties[J]. Food
                 2015, 182: 275-281.                               Hydrocolloids, 2019, 93: 432-442.
   210   211   212   213   214   215   216   217   218   219   220