Page 233 - 《精细化工》2023年第4期
P. 233

す 4 ᱌                  ᱻͪͪ喑ぶ: PDA/DTMS-㏠ㆠ TiO 2 ᄦ㯂͊㏴➖㜗ԛฺ䊲⪼Ⅱ᪡⤳                            g919g


            ㏠ㆠ TiO 2 ᩦᕔ㯂͊㏴➖⮱Ⅱᣒ㼓㻿ᰶ᝭̸䭺喑ѳ፲                        ➖ڤᰶ㞜ສ⮱㜗⌲∮䭟↎㘪߈ȡₑใ喑PDA/DTMS-
            Ꮣ̺๔喑㏼͊℈≄⋑ݯ≄⋑ 25 ⁎ऻ喑ڣᣒ㼓㻿ͧ                           ㏠ㆠ TiO 2 ᩦᕔ㯂͊㏴➖㶕⣝ܧ㞜ສ⮱䊲⪼Ⅱࣷោ㉘
            151°喑Ϻڤᰶ䊲⪼Ⅱᕔȡຯఫ 9b ᝭⹧喑PDA/DTMS-                    ใ㏬⮱㔽⏣ݯ≄ᕔ㘪喑ߌ㘪㔽Ͳᕔສȡ᱙ݣิጒ㞧
            ㏠ㆠ TiO 2 ᩦᕔ㯂͊㏴➖㏼͊℈≄⋑ݯ≄⋑ 25 ⁎ऻ喑                     キࢂȠ㐬㞟⣜Ԋ́Фᵩ䒰ѻ᏶喑ౕ㏧㏴৮⮱ߌ㘪᪡
            ڣ UPF ⩞᱗㏼≄⋑⮱ 75.81 䭺ͧ 49.50喑UVA 䔼䓴                 ⤳͚ᰶ䒰倅⮱ᣕᎬᏁ⩕Фթȡ
            ⢴⩞᱗㏼≄⋑⮱ 0.59%̷ࡴͧ 1.32%喑ោ㉘ใ㏬ᕔ
                                                               ࣯㔰᪴⡛喟
            㘪Ϻ䒰ͧхᐯȡ䔆ψ㐀᳉䄡ᬻ喑PDA হ DTMS ᩦᕔ
                                                               [1]   ZHENG Y L (䗾⢶⣟). Application of anti-staining agent S-2 to silk
            ㏠ㆠ TiO 2 ⮱ڞह҉⩕Ҭ㯂͊㏴➖ڤᰶ㞜ສ⮱䊲⪼Ⅱ                            fabrics[J]. Dyeing & Finishing (࢝ᴀ), 2010, 36(2): 34-35.
            Вࣷោ㉘ใ㏬Ƞ㔽⏣ݯ≄ᕔ㘪ȡ                                     [2]   YANG L (Ვ䱟),  MENG J G (ႌუٶ), XUE  T (㫈⋈). Research
                                                                   progress of textile self-cleaning finishing[J]. Journal of Textile Science
                                                                   and Engineering (㏧㏴⻾႓̻ጒ⼸႓្), 2022, 39(1): 78-84.
                                                               [3]   ALJUMAILY M M, ALSAADI M A, DAS R, et al. Optimization of
                                                                   the synthesis of superhydrophobic carbon nanomaterials by chemical
                                                                   vapor deposition[J]. Scientific Reports, 2018, 8(1): 2778-2786.
                                                               [4]   LI A, WANG G, ZHANG Y, et al. Preparation methods and research
                                                                   progress of superhydrophobic paper[J]. Coordination Chemistry Reviews,
                                                                   2021, 449: 214207.
                                                               [5]   FENG L Z, YAN X, HOQUE M J, et al. Superhydrophobic surfaces
                                                                   made from naturally derived hydrophobic materials[J]. ACS Sustainable
                                                                   Chemistry & Engineering, 2019, 5(12): 11362-11370.
                                                               [6]   CAI D P (㩎๔卼). Preparation of superhydrophobic silk based on
                                                                   MgO and organosilicone and its properties[D].Suzhou:  Soochow
                                                                   University (㟼ጋ๔႓), 2019.
                                                               [7]   GAO S (倅༄), LI H Q (ᱻ㏏ᑧ), CHEN Z H (䭵͚ࡻ),  et al.
                                                                   Research progress on  the preparation and functionalization of
                                                                   self-healing superhydrophobic materials[J]. Fine Chemicals (㇫㏳ࡃ
                                                                   ጒ), 2020,37(12): 2377-2385, 2397.
                                                               [8]   MA W, ZHAO J, OLAYINKA  O,  et al. Durable superhydrophobic
                                                                   and superoleophilic electrospun nanofibrous membrane for oil-water
                                                                   emulsion separation[J]. Journal of Colloid and Interface Science,
                                                                   2018, (532): 12-23.
                                                               [9]   ZHANG C, OU  Y, LEI W X,  et al. CuSO 4/H 2O 2-induced rapid
                                                                   deposition of polydopamine  coatings  with high uniformity  and
                                                                   enhanced stability[J]. Angewandte Chemie International Edition,
                                                                   2016, 55(9): 3054-3057.
                                                               [10]  WANG H (⢸⊖), LIU N (݅ཉ), CHEN Z  S  (䭵∪̓),  et al.

                                                                   Superhydrophobic antibacterial natural cellulose fabric and its
            ఫ 9  PDA/DTMS-㏠ㆠ TiO 2 ᩦᕔ㯂͊㏴➖㔽≄ᕔ喟≄⋑                    preparation method: CN112900102B[P]. 2022-03-04.
                                                               [11]  ZHANG Y, FU F,  ZHOU F,  et al. Synergistic effect of RGO/TiO 2
                 ᄦⅡᣒ㼓㻿喍a喎হោ㉘ใ㏬ᕔ㘪⮱ᒞ৺喍b喎                             nanosheets with exposed (001)  facets for boosting  visible light
            Fig. 9    Washing resistance of PDA/DTMS-nanoTiO 2  modified   photocatalytic  activity[J]. Applied Surface  Science,  2020,(510):
                  fabric: Effect of washing on water contact angle (a)   145451.
                  and anti ultraviolet (b)                     [12]  CHEN Q  H, MAO X G, HAN  Y X,  et al. Preparation and

                                                                   characterization of bamboo fiber-graft-lauryl-methacrylateand its
                                                                   composites with polypropylene[J]. Applied  Polymer, 2013, 130(4):
            3   㐀䃧                                                 2377-2382.
                                                               [13]  WEI W C(䴓᪴ࢯ)喑LUI Z(݅ሒ)喑WEI R Z(偼⋓㟊),  et al.
                 䛴⩕็ጡ㘧ᔘ䕌㖇व↶⼜ౕ㯂͊㏴➖㶕䲏喑Ꭳ                              Preparation of superhydrophobic composite coating based on MOFs
                                                                   materials and its corrosion protection for carbon steel[J]. Materials
            ݖ⩕ PDA ⮱倅叼䭱ᕔᑂڒ DTMS ᩦᕔ㏠ㆠ TiO 2 ᄦ                       Reports(ᱽ᫆ᄩ្), 2021, 35(20): 20068-20075.
            㯂͊㏴➖䔈㵹䊲⪼Ⅱߌ㘪᪡⤳喑ݣิ⮱ PDA/DTMS-                        [14] YUAN L (㶮ϛ). Study on functional modification of cotton fabric
                                                                   based on rapid polymerization of  dopamine[D]. Hefei: Anhui
            ㏠ㆠ TiO 2 ᩦᕔ㯂͊㏴➖ڤᰶхᐯ⮱䊲⪼Ⅱᕔࣷោ㉘                            Agricultural University (Ⴖᓪۉ͇๔႓), 2021.
            ใ㏬ᕔ㘪ȡᄦᩦᕔݺऻ㯂͊㏴➖䔈㵹ᓛ㻯ᒏ䆹হ㐀                             [15]  HAO L, YAN T, FICHTHORN K A, et al. Dynamic contact angles
                                                                   and mechanisms of motion of water droplets moving on nanopillared
            Ჱᕔ㘪⮱≸䄂ࣾ⣝喑ᔘ䕌⅔ࡃ㖇वᒏ᜽⮱ PDA ䷄ㆿ                              superhydrophobic surfaces: A molecular dynamics simulation study
            হ㏠ㆠ TiO 2 ڞह҉⩕Ჱᐧγ䊲⪼Ⅱ㏴➖㶕䲏⽠Ⴧ⮱                            [J]. Langmuir, 2018, 34(34): 9917-9926.
                                                               [16]  CAO J, WANG C. Multifunctional surface modification of silk fabric
            ᓛ㏠㇄㈆㐀Ჱ喑DTMS ᑂڒ⪼Ⅱᕔ䪬䨫⵲☤喑䭺ѻ                               via graphene oxide repeatedly coating and chemical reduction method
            γ㏴➖㶕䲏㘪ȡ㏼䓴ѻ⍖ぶ⻨ၽҀহᱧᷝᦖᨓᢌё                                 [J]. Applied Surface Science, 2017, 405: 380-388.
                                                               [17]  HONG G, CHENG H, MENG Y, et al. Mussel-inspired polydopamine
            ऻ喑䊲⪼Ⅱ㯂͊㏴➖ज䕇䓴ߍ☚ᖏฺ䊲⪼Ⅱᕔ喠ౕ                                 as a green, efficient, and stable platform to functionalize bamboo
            10 ⁎ぶ⻨ၽҀݨ㮭-ߍ☚ԛฺ⮱ᓗ⣜ক᱌হ 1200 ⁎                           fiber with amino-terminated alkyl for high performance poly (butylene
                                                                   succinate) composites[J]. Polymers, 2018, 10(4): 461.
            ᱧᷝᦖᨓᢌё-ԛฺᓗ⣜ऻ喑㏴➖Ⅱᣒ㼓㻿Ϻ䘪䓫ݝ

            150°В̷喑ڤᰶ㞜ສ⮱⪼Ⅱ㜗ԛฺ㘪߈喑́ᩦᕔ㏴                                                          喍̸䒙す 928 䶢喎
   228   229   230   231   232   233   234   235   236   237   238