Page 113 - 《精细化工》2023年第6期
P. 113
第 6 期 黄 睿,等: 功能化纳米纤维素复合 PLA/PBAT 薄膜的制备及性能 ·1263·
(PHA) bioplastics and their composites[J]. Green Chemistry, 2020, Science, 2019, 88: 241-264.
22(17): 5519-5558. [22] NIE S X, FU Q, LIN X J, et al. Enhanced performance of a cellulose
[7] WANG G Q ( 王国全 ). Principle and application of polymer nano fibrils-based triboelectric nanogenerator by tuning the surface
blending[M]. Beijing: China Light Industry Press (中国轻工业出版 polarizability and hydrophobicity[J]. Chemical Engineering Journal,
社), 2007. 2021, 404: 126512.
[8] NAGARAJAN V, MOHANTY A K, MISRATT M. Perspective on [23] HATTON F L, MALMSTROM E, CARLMARK A. Tailor-made
polylactic acid (PLA) based sustainable materials for durable copolymers for the adsorption to cellulosic surfaces[J]. European
applications: Focus on toughness and heat resistance[J]. ACS Polymer Journal, 2015, 65: 325-339.
Sustainable Chemistry & Engineering, 2016, 4(6): 2899-2916. [24] ZHU Y (朱艳), ZHANG Q F (张奇锋), JIA S K (贾仕奎), et al.
[9] KUANG T R, JU J J, LIU T, et al. A facile structural manipulation Effects of surface-modified nanocellulose on hygrothermal aging
strategy to prepare ultra-strong, super-tough, and thermally stable behavior of PLA/PBS blends[J]. China Plastics (中国塑料), 2019,
polylactide/nucleating agent composites[J]. Advanced Composites 33(12): 16-22.
and Hybrid Materials, 2022, 5(2): 948-959. [25] KORIGODSKII A A, ZHIRNOV A E, KECHEKYAN A S, et al.
[10] PIEKARSKA K, SOWINSKI P, PIORKOWSKA E, et al. Structure Transparent polymer blends of poly(methyl methacrylate) and
and properties of hybrid PLA nanocomposites with inorganic poly(propylene glycol)[J]. Polymers, 2022, 14(11): 2171.
nanofillers and cellulose fibers[J]. Composites, Part A: Applied Science [26] YIN Y Y, MA J J, TIAN X Z, et al. Cellulose nanocrystals
and Manufacturing, 2016, 82: 34-41. functionalized with amino-silane and epoxy-poly(ethylene glycol) for
[11] REN Q, WU M H, WANG L, et al. Cellulose nanofiber reinforced reinforcement and flexibilization of poly(lactic acid): Material
poly(lactic acid) with enhanced rheology, crystallization and foaming preparation and compatibility mechanism[J]. Cellulose, 2018, 25(11):
ability[J]. Carbohydrate Polymers, 2022, 286: 119320. 6447-6463.
[12] SUN Y, YANG L P, LU X H, et al. Biodegradable and renewable [27] LU T J, JIANG M, JIANG Z G, et al. Effect of surface modification
poly(lactide)-lignin composites: Synthesis, interface and toughening of bamboo cellulose fibers on mechanical properties of cellulose/epoxy
mechanism[J]. Journal of Materials Chemistry A, 2015, 3(7): 3699- composites[J]. Composites, Part B: Engineering, 2013, 51: 28-34.
3709. [28] TAN Y, LIU Y Z, CHEN W S, et al. Homogeneous dispersion of
[13] ANDRZEJEWSKI J, CHENG J, ANSTEY A, et al. Development of cellulose nanofibers in waterborne acrylic coatings with improved
toughened blends of poly(lactic acid) and poly(butylene adipate- properties and unreduced transparency[J]. ACS Sustainable Chemistry
co-terephthalate) for 3D printing applications: Compatibilization & Engineering, 2016, 4(7): 3766-3772.
methods and material performance evaluation[J]. ACS Sustainable [29] KIJCHAVENGKUL T, AURAS R, RUBINO M, et al. Formulation
Chemistry & Engineering, 2020, 8(17): 6576-6589. selection of aliphatic aromatic biodegradable polyester film exposed
[14] YANG W J, WENG Y X, PUGLIA D, et al. Poly (lactic acid)/lignin to UV/solar radiation[J]. Polymer Degradation and Stability, 2011,
films with enhanced toughness and anti-oxidation performance for 96(10): 1919-1926.
active food packaging[J]. International Journal of Biological [30] LIU X D (刘旭东), WEN Y (温勇), ZHANG W Y (张文艺), et al.
Macromolecules, 2020, 144: 102-110. Study on the polypropylene glycol toughening epoxy resin and its
[15] SETHI J, ILLIKAINEN M, SAIN M, et al. Polylactic acid/ properties[J]. Thermosetting Resin (热固性树脂), 2019, 34(1): 16-
polyurethane blend reinforced with cellulose nanocrystals with semi- 18.
interpenetrating polymer network (S-IPN) structure[J]. European [31] WANG H R (王海睿), CHEN C (陈冲), GUI Z Y (桂宗彦), et al.
Polymer Journal, 2017, 86: 188-199. Thermal and rheological properties of poly(lactic acid) and poly
[16] LI W L, SUN C, LI C X, et al. Preparation of effective ultraviolet (propylene glycol) blends[J]. Plastics (塑料), 2010, 39(4): 78-80.
shielding poly(lactic acid)/poly(butylene adipate-co-terephthalate) [32] ZHAO P, LIU W Q, WU Q S, et al. Preparation, mechanical, and
degradable composite film using co-precipitation and hot-pressing thermal properties of biodegradable polyesters/poly(lactic acid)
method[J]. International Journal of Biological Macromolecules, blends[J]. Journal of Nanomaterials, 2010, 2010: 287082.
2021, 191: 540-547. [33] WU D F, WU L, WU L F, et al. Nonisothermal cold crystallization
[17] WANG L F, RHIM J W, HONG S I, et al. Preparation of behavior and kinetics of polylactide/clay nanocomposites[J]. Journal
poly(lactide)/poly(butylene adipate-co-terephthalate) blend films of Polymer Science, Part B: Polymer Physics, 2007, 45(9): 1100-
using a solvent casting method and their food packaging application[J]. 1113.
LWT Food Science & Technology, 2016, 68: 454-461. [34] CARBONELL V A, FERRI J M, DOMINICI F, et al. Manufacturing
[18] QIU S, ZHOU Y K, GONG R Z, et al. Optimizing interfacial and compatibilization of PLA/PBAT binary blends by cottonseed oil-
adhesion in PBAT/PLA nanocomposite for biodegradable packaging based derivatives[J]. Express Polymer Letters, 2018, 12(9): 808- 823.
films[J]. Food Chemistry, 2021, 334: 127487. [35] YAO Q, SONG Z, LI J, et al. Micromorphology, mechanical,
[19] NECHYPORCHUK O, BELGACEM M N, BRAS J. Production of crystallization and permeability properties analysis of HA/PBAT/
cellulose nanofibrils: A review of recent advances[J]. Industrial PLA [HA, hydroxyapatite; PBAT, poly(butylene adipate-co-
Crops & Products, 2016, 93: 2-25. butylene terephthalate); PLA, polylactide] degradability packaging
[20] VATANSEVER E, ARSLAN D, NOFAR M. Polylactide cellulose- films[J]. Polymer International, 2020, 69(3): 301-307.
based nanocomposites[J]. International Journal of Biological [36] LUO J Q (罗嘉倩), SU Y Q (苏艳群), LIU J G (刘金刚), et al.
Macromolecules, 2019, 137: 912-938. Current research on oxygen and water vapor barrier properties of
[21] ROL F, BELGACEM M N, GANDINI A, et al. Recent advances in nanocellulose materials[J]. Transactions of China Pulp and Paper (中
surface-modified cellulose nanofibrils[J]. Progress in Polymer 国造纸学报), 2019, 34(3): 61-70.