Page 113 - 《精细化工》2023年第6期
P. 113

第 6 期                 黄   睿,等:  功能化纳米纤维素复合 PLA/PBAT 薄膜的制备及性能                            ·1263·


                 (PHA) bioplastics and their composites[J]. Green Chemistry, 2020,   Science, 2019, 88: 241-264.
                 22(17): 5519-5558.                            [22]  NIE S X, FU Q, LIN X J, et al. Enhanced performance of a cellulose
            [7]   WANG G Q ( 王国全 ). Principle  and application  of polymer   nano fibrils-based triboelectric nanogenerator by tuning the surface
                 blending[M]. Beijing: China Light Industry Press (中国轻工业出版  polarizability and hydrophobicity[J]. Chemical Engineering Journal,
                 社), 2007.                                         2021, 404: 126512.
            [8]   NAGARAJAN V, MOHANTY A K, MISRATT M. Perspective on   [23]  HATTON F  L, MALMSTROM E, CARLMARK A. Tailor-made
                 polylactic acid (PLA) based sustainable materials for durable   copolymers for the adsorption to cellulosic surfaces[J]. European
                 applications: Focus on toughness and heat resistance[J]. ACS   Polymer Journal, 2015, 65: 325-339.
                 Sustainable Chemistry & Engineering, 2016, 4(6): 2899-2916.   [24] ZHU  Y  (朱艳),  ZHANG Q F (张奇锋), JIA S K (贾仕奎),  et al.
            [9]   KUANG T R, JU J J, LIU T, et al. A facile structural manipulation   Effects of surface-modified nanocellulose on hygrothermal aging
                 strategy to prepare ultra-strong, super-tough, and thermally stable   behavior of PLA/PBS blends[J]. China Plastics (中国塑料), 2019,
                 polylactide/nucleating agent composites[J]. Advanced Composites   33(12): 16-22.
                 and Hybrid Materials, 2022, 5(2): 948-959.    [25]  KORIGODSKII A  A, ZHIRNOV A  E, KECHEKYAN A S,  et al.
            [10]  PIEKARSKA K, SOWINSKI P, PIORKOWSKA E, et al. Structure   Transparent polymer blends of poly(methyl  methacrylate) and
                 and properties  of hybrid  PLA nanocomposites with inorganic   poly(propylene glycol)[J]. Polymers, 2022, 14(11): 2171.
                 nanofillers and cellulose fibers[J]. Composites, Part A: Applied Science   [26]  YIN Y Y, MA J J, TIAN X Z,  et al. Cellulose nanocrystals
                 and Manufacturing, 2016, 82: 34-41.               functionalized with amino-silane and epoxy-poly(ethylene glycol) for
            [11]  REN Q, WU M H, WANG L, et al. Cellulose nanofiber reinforced   reinforcement and flexibilization of poly(lactic acid): Material
                 poly(lactic acid) with enhanced rheology, crystallization and foaming   preparation and compatibility mechanism[J]. Cellulose, 2018, 25(11):
                 ability[J]. Carbohydrate Polymers, 2022, 286: 119320.   6447-6463.
            [12]  SUN Y, YANG L P, LU X H, et al. Biodegradable and renewable   [27]  LU T J, JIANG M, JIANG Z G, et al. Effect of surface modification
                 poly(lactide)-lignin composites: Synthesis, interface and toughening   of bamboo cellulose fibers on mechanical properties of cellulose/epoxy
                 mechanism[J]. Journal of Materials Chemistry A, 2015, 3(7): 3699-   composites[J]. Composites, Part B: Engineering, 2013, 51: 28-34.
                 3709.                                         [28]  TAN Y,  LIU Y Z, CHEN W S, et al. Homogeneous dispersion of
            [13]  ANDRZEJEWSKI J, CHENG J, ANSTEY A, et al. Development of   cellulose nanofibers in waterborne acrylic coatings with improved
                 toughened  blends  of poly(lactic acid) and poly(butylene adipate-   properties and unreduced transparency[J]. ACS Sustainable Chemistry
                 co-terephthalate) for 3D printing applications: Compatibilization   & Engineering, 2016, 4(7): 3766-3772.
                 methods and material performance  evaluation[J]. ACS Sustainable   [29]  KIJCHAVENGKUL T, AURAS R, RUBINO M, et al. Formulation
                 Chemistry & Engineering, 2020, 8(17): 6576-6589.   selection of aliphatic aromatic biodegradable polyester film exposed
            [14]  YANG W J, WENG Y X, PUGLIA D, et al. Poly (lactic acid)/lignin   to UV/solar radiation[J]. Polymer Degradation and Stability, 2011,
                 films with enhanced toughness and anti-oxidation performance for   96(10): 1919-1926.
                 active food packaging[J]. International Journal  of  Biological   [30]  LIU X D (刘旭东), WEN Y (温勇), ZHANG W Y (张文艺), et al.
                 Macromolecules, 2020, 144: 102-110.               Study on the polypropylene glycol toughening epoxy resin and  its
            [15]  SETHI J, ILLIKAINEN M, SAIN M,  et al. Polylactic acid/   properties[J]. Thermosetting Resin (热固性树脂), 2019, 34(1): 16-
                 polyurethane blend reinforced with cellulose nanocrystals with semi-   18.
                 interpenetrating polymer network (S-IPN) structure[J]. European   [31]  WANG H R (王海睿), CHEN C (陈冲), GUI Z Y (桂宗彦), et al.
                 Polymer Journal, 2017, 86: 188-199.               Thermal and rheological properties of poly(lactic acid) and poly
            [16]  LI W L, SUN C, LI C X, et al. Preparation of effective ultraviolet   (propylene glycol) blends[J]. Plastics (塑料), 2010, 39(4): 78-80.
                 shielding poly(lactic acid)/poly(butylene adipate-co-terephthalate)   [32]  ZHAO P, LIU W  Q, WU Q S, et al. Preparation, mechanical, and
                 degradable composite film using co-precipitation and hot-pressing   thermal properties of  biodegradable polyesters/poly(lactic acid)
                 method[J]. International Journal of  Biological Macromolecules,   blends[J]. Journal of Nanomaterials, 2010, 2010: 287082.
                 2021, 191: 540-547.                           [33]  WU D F, WU L, WU L F, et al. Nonisothermal cold crystallization
            [17]  WANG L F, RHIM J W, HONG S I,  et al. Preparation of   behavior and kinetics of polylactide/clay nanocomposites[J]. Journal
                 poly(lactide)/poly(butylene adipate-co-terephthalate) blend films   of Polymer Science, Part B: Polymer Physics, 2007, 45(9): 1100-
                 using a solvent casting method and their food packaging application[J].   1113.
                 LWT Food Science & Technology, 2016, 68: 454-461.   [34]  CARBONELL V A, FERRI J M, DOMINICI F, et al. Manufacturing
            [18]  QIU S, ZHOU  Y K, GONG R Z,  et al. Optimizing  interfacial   and compatibilization of PLA/PBAT binary blends by cottonseed oil-
                 adhesion in PBAT/PLA nanocomposite for biodegradable packaging   based derivatives[J]. Express Polymer Letters, 2018, 12(9): 808- 823.
                 films[J]. Food Chemistry, 2021, 334: 127487.   [35]  YAO Q, SONG  Z, LI J,  et al. Micromorphology, mechanical,
            [19]  NECHYPORCHUK O, BELGACEM M N, BRAS J. Production of   crystallization and  permeability properties analysis of HA/PBAT/
                 cellulose nanofibrils: A review of recent advances[J]. Industrial   PLA [HA, hydroxyapatite; PBAT, poly(butylene  adipate-co-
                 Crops & Products, 2016, 93: 2-25.                 butylene terephthalate); PLA, polylactide] degradability packaging
            [20]  VATANSEVER E, ARSLAN D, NOFAR M. Polylactide cellulose-   films[J]. Polymer International, 2020, 69(3): 301-307.
                 based nanocomposites[J]. International Journal of  Biological   [36]  LUO J Q (罗嘉倩), SU Y Q (苏艳群), LIU J G (刘金刚),  et al.
                 Macromolecules, 2019, 137: 912-938.               Current research on oxygen and water vapor barrier properties of
            [21]  ROL F, BELGACEM M N, GANDINI A, et al. Recent advances in   nanocellulose materials[J]. Transactions of China Pulp and Paper (中
                 surface-modified cellulose nanofibrils[J]. Progress in Polymer   国造纸学报), 2019, 34(3): 61-70.
   108   109   110   111   112   113   114   115   116   117   118