Page 152 - 《精细化工》2023年第8期
P. 152

·1766·                            精细化工   FINE CHEMICALS                                 第 40 卷

                 基于以上分析,对于光降解 MO 来说,WO 3 和                         工), 2019, 36(6): 1062-1068.
                                                               [7]   XU Z H, XU B T, QIAN K, et al. In situ growth of CuS nanoparticles
            Ag:ZnIn 2 S 4 价带上的电子受光照迁移到各自导带                         on g-C 3N 4 nanosheets for H 2 production and the degradation of
            上,但是在异质结界面电荷差驱动下,WO 3 导带上                              organic pollutant under visible-light irradiation[J]. RSC  Advances,
                                                                   2019, 9(44): 25638-25646.
            的光生电子要与 Ag:ZnIn 2 S 4 价带上的空穴复合,从                   [8]   WANG S, WANG  Y, ZHANG S L, et al. Supporting ultrathin
            而形成了“Z 型”光生电子传输途径,这有效地延                                ZnIn 2S 4 nanosheets on Co/N-doped graphitic carbon nanocages for
                                                                   efficient photocatalytic H 2 generation[J]. Advanced Materials, 2019,
            长了光生载流子的迁移路径,进而阻碍了电子-空穴
                                                                   31(41): 1903404-1903410.
            对的复合,达到提升光降解速率的目的。同理,对                             [9]   TONG C J (童春杰), WANG G Y (王桂赟), TIAN W S (田伟松),
                                                                   et al. Synthesis of WO 3 by hydrothermal method with malic acid and
            光解水制氢来说,在可见光照射下,光生电子从各
                                                                   photocatalytic performance of WO 3-CuCrO 2[J]. Fine Chemicals (精
            自价带上与空穴分离迁移到导带上,用三乙醇胺牺                                 细化工), 2020, 37(3): 528-539.
            牲空穴后,且在异质结界面电荷差的驱动下,光生                             [10]  TANAKA A, HASHIMOTO K, KOMINAMI H. Visible-light-induced
                                                                   hydrogen and  oxygen formation over Pt/Au/WO 3 photocatalyst
            电子从 WO 3 导带上回到 Ag:ZnIn 2S 4 价带上,随后迁移                   utilizing two types of photoabsorption due to surface plasmon
                                         +
            到 Ag:ZnIn 2S 4 导带上,最终将 H 还原生成 H 2。结果                   resonance and band-gap excitation[J]. Journal of the American
                                                                   Chemical Society, 2014, 136(2): 586-589.
            证明,构筑独特的 2D WO 3/Ag:ZnIn 2S 4  Z 型异质结复             [11]  DING Y, WEI D  Q, HE R, et al.  Rational design of  Z-scheme
            合物可以有效延长电荷传输路径,并且减缓了光生载                                PtS-ZnIn 2S 4/WO 3-MnO 2 for  overall  photo-catalytic water splitting
                                                                   under visible light[J]. Applied Catalysis B: Environmental, 2019,
            流子的复合,同时也生成了强氧化性的光生载流子,                                258: 117948.
            进一步提升了光解水制氢速率和 MO 降解速率。                            [12]  KATSUMATA H, TACHI Y, SUZUKI T, et al. Z-Scheme photocatalytic
                                                                   hydrogen production over WO 3/g-C 3N 4 composite photocatalysts[J].
                                                                   RSC Advance, 2014, 4(41): 21405-21409.
            3   结论                                             [13]  WANG T Y, QUAN W, JIANG  D L,  et al. Synthesis of redox-
                                                                   mediator-free direct Z-scheme AgI/WO 3 nanocomposite photocatalysts
                 本文通过水热法成功构筑了 2D WO 3/Ag:ZnIn 2S 4                 for the degradation of  tetracycline  with enhanced photocatalytic
                                                                   activity[J]. Chemical Engineering Journal, 2016, 300: 280-290.
            Z 型异质结复合物,并对样品结构、形貌及光催化                            [14]  TAN P F, ZHU A Q, QIAO L L, et al. Constructing a direct Z-scheme
            性能进行了表征。2D WO 3 /Ag:ZnIn 2 S 4  Z 型异质结复                photocatalytic system based on 2D/2D WO 3/ZnIn 2S 4 nanocomposite
                                                                   for efficient hydrogen evolution  under visible light[J]. Inorganic
            合物不论是光解水制氢〔158.93 µmol/(g·h)〕还是光                       Chemistry Frontiers, 2019, 6(4): 929-939.
                                        –1                     [15]  SUN Y G (孙亚光), ZHANG H Y (张含烟), MING T (明涛), et al.
            降解 MO 的降解速率(0.18 min )都比纯样品 WO 3
                                                                   Synthesis of ZnIn 2S 4/g-C 3N 4 nanocomposites with efficient photocatalytic
            纳米片表现出更优异的性能,这主要归因于原位负                                 H 2 generation activity by a simple hydrothermal method[J]. Chemical
            载 Ag:ZnIn 2 S 4 形成独特的 2D WO 3 /Ag:ZnIn 2 S 4   Z 型     Journal of Chinese Universities (高等学校化学学报), 2021, 42(10):
                                                                   3160-3166.
            异质结复合物体系,延长了光生电荷的传输途径,                             [16]  YANG W L, ZHANG L, XIE J F, et al. Enhanced photoexcited
            从而阻碍光生电荷的复合,又增强了光生载流子的                                 carrier separation in oxygen-doped ZnIn 2S 4 nanosheets for hydrogen
                                                                   evolution[J]. Angewandte Chemie International Edition, 2016, 55(23):
            氧化还原能力,最终能有效地提升光催化速率。该                                 6716-6720.
            工作可为基于 WO 3 光催化剂用于可见光光解水制                          [17]  XU Z H (徐振和), LI H J (李泓江), GAO Y (高雨), et al.
                                                                   Preparation of In 2O 3/Ag:ZnIn 2S 4 "Type  Ⅱ" heterogeneous structure
            氢与环境净化方面提供参考。                                          materials for  visible light catalysis[J]. CIESC Journal (化工学报),
                                                                   2022, 73(8): 3625-3635.
            参考文献:                                              [18]  WANG P F, SHEN Z R, XIA Y G, et al. Atomic insights for optimum
                                                                   and excess doping in photocatalysis: A case study of few-layer
            [1]   XU Z H,  QUINTANILLA M,  VETRONE F, et al. Harvesting  lost   Cu-ZnIn 2S 4[J]. Advanced Functional Materials, 2019, 29(3):
                 photons: Plasmon and upconversion enhanced broadband photocatalytic   1807013-1807021.
                 activity in core@shell microspheres based on lanthanide-doped NaYF 4,   [19]  GAO Y, XU B T,  CHERIF  M, et  al. Atomic insights for Ag
                 TiO 2, and Au[J].  Advanced Functional Materials, 2015, 25(20):   interstitial/substitutional doping into ZnIn 2S 4 nanoplates  and intimate
                 2950-2960.                                        coupling with reduced graphene oxide for enhanced photocatalytic
            [2]   WANG L Z (王立志), SHAN S Y (陕绍云), ZHI Y F (支云飞), et al.   hydrogen production by water splitting[J]. Applied Catalysis B:
                 Research progress of g-C 3N 4 in photocatalytic hydrogen production:   Environmental, 2020, 279: 119403-119409.
                 How to promote light absorption and carrier separation transport[J].   [20]  GAO Y, QIAN K, XU B T, et  al. Designing 2D-2D g-C 3N 4/
                 Fine Chemicals (精细化工), 2021, 38(11): 2199-2207.   Ag:ZnIn 2S 4 nanocomposites for the high-performance conversion of
            [3]   ZHANG Q Z, DENG J J, XU Z H, et al. High-efficiency broadband   sunlight energy into hydrogen fuel and the meaningful reduction of
                 C 3N 4 photocatalysts: Synergistic effects from upconversion and   pollution[J]. RSC Advances, 2020, 10(54): 32652-32661.
                 plasmons[J]. ACS Catalysis, 2017, 7(9): 6225-6234.   [21]  ZHANG Q Z, YANG F, ZHOU S, et al. Broadband photocatalysts
            [4]   SUN J H, ZHANG J S, ZHANG M G, et  al. Bioinspired hollow   enabled by 0D/2D heterojunctions of near-infrared quantum
                 semiconductor nanospheres as photosynthetic nanoparticles[J]. Nature   dots/graphitic carbon nitride nanosheets[J]. Applied Catalysis B:
                 Communications, 2012, 3: 1139.                    Environmental, 2020, 270: 118879.
            [5]  GAO Y  (高雨), ZHANG  H Y (张含烟), LIN J Y (林俊英), et al.   [22]  ZHAO X  Y, ZHANG Y, ZHAO  Y  Y,  et al. Ag xH 3–xPMo 12O 40/Ag
                 Preparation of  CdS/RGO/MoS 2 composite and  its  photocatalytic   nanorods/g-C 3N 4 1D/2D Z-scheme heterojunction for highly efficient
                 performance[J]. Fine Chemicals (精细化工), 2022, 39(4): 734-740.   visible-light photocatalysis[J]. Dalton Transactions, 2019, 48(19):
            [6]  LIU  L  (刘立), YANG  Y R (杨玉蓉), QIU M (邱敏),  et al.   6484-6491.
                 Preparation of CDots-(001) TiO 2 nanosheets and their photocatalytic
                 water splitting for hydrogen production[J]. Fine Chemicals (精细化             (下转第 1775 页)
   147   148   149   150   151   152   153   154   155   156   157