Page 152 - 《精细化工》2023年第8期
P. 152
·1766· 精细化工 FINE CHEMICALS 第 40 卷
基于以上分析,对于光降解 MO 来说,WO 3 和 工), 2019, 36(6): 1062-1068.
[7] XU Z H, XU B T, QIAN K, et al. In situ growth of CuS nanoparticles
Ag:ZnIn 2 S 4 价带上的电子受光照迁移到各自导带 on g-C 3N 4 nanosheets for H 2 production and the degradation of
上,但是在异质结界面电荷差驱动下,WO 3 导带上 organic pollutant under visible-light irradiation[J]. RSC Advances,
2019, 9(44): 25638-25646.
的光生电子要与 Ag:ZnIn 2 S 4 价带上的空穴复合,从 [8] WANG S, WANG Y, ZHANG S L, et al. Supporting ultrathin
而形成了“Z 型”光生电子传输途径,这有效地延 ZnIn 2S 4 nanosheets on Co/N-doped graphitic carbon nanocages for
efficient photocatalytic H 2 generation[J]. Advanced Materials, 2019,
长了光生载流子的迁移路径,进而阻碍了电子-空穴
31(41): 1903404-1903410.
对的复合,达到提升光降解速率的目的。同理,对 [9] TONG C J (童春杰), WANG G Y (王桂赟), TIAN W S (田伟松),
et al. Synthesis of WO 3 by hydrothermal method with malic acid and
光解水制氢来说,在可见光照射下,光生电子从各
photocatalytic performance of WO 3-CuCrO 2[J]. Fine Chemicals (精
自价带上与空穴分离迁移到导带上,用三乙醇胺牺 细化工), 2020, 37(3): 528-539.
牲空穴后,且在异质结界面电荷差的驱动下,光生 [10] TANAKA A, HASHIMOTO K, KOMINAMI H. Visible-light-induced
hydrogen and oxygen formation over Pt/Au/WO 3 photocatalyst
电子从 WO 3 导带上回到 Ag:ZnIn 2S 4 价带上,随后迁移 utilizing two types of photoabsorption due to surface plasmon
+
到 Ag:ZnIn 2S 4 导带上,最终将 H 还原生成 H 2。结果 resonance and band-gap excitation[J]. Journal of the American
Chemical Society, 2014, 136(2): 586-589.
证明,构筑独特的 2D WO 3/Ag:ZnIn 2S 4 Z 型异质结复 [11] DING Y, WEI D Q, HE R, et al. Rational design of Z-scheme
合物可以有效延长电荷传输路径,并且减缓了光生载 PtS-ZnIn 2S 4/WO 3-MnO 2 for overall photo-catalytic water splitting
under visible light[J]. Applied Catalysis B: Environmental, 2019,
流子的复合,同时也生成了强氧化性的光生载流子, 258: 117948.
进一步提升了光解水制氢速率和 MO 降解速率。 [12] KATSUMATA H, TACHI Y, SUZUKI T, et al. Z-Scheme photocatalytic
hydrogen production over WO 3/g-C 3N 4 composite photocatalysts[J].
RSC Advance, 2014, 4(41): 21405-21409.
3 结论 [13] WANG T Y, QUAN W, JIANG D L, et al. Synthesis of redox-
mediator-free direct Z-scheme AgI/WO 3 nanocomposite photocatalysts
本文通过水热法成功构筑了 2D WO 3/Ag:ZnIn 2S 4 for the degradation of tetracycline with enhanced photocatalytic
activity[J]. Chemical Engineering Journal, 2016, 300: 280-290.
Z 型异质结复合物,并对样品结构、形貌及光催化 [14] TAN P F, ZHU A Q, QIAO L L, et al. Constructing a direct Z-scheme
性能进行了表征。2D WO 3 /Ag:ZnIn 2 S 4 Z 型异质结复 photocatalytic system based on 2D/2D WO 3/ZnIn 2S 4 nanocomposite
for efficient hydrogen evolution under visible light[J]. Inorganic
合物不论是光解水制氢〔158.93 µmol/(g·h)〕还是光 Chemistry Frontiers, 2019, 6(4): 929-939.
–1 [15] SUN Y G (孙亚光), ZHANG H Y (张含烟), MING T (明涛), et al.
降解 MO 的降解速率(0.18 min )都比纯样品 WO 3
Synthesis of ZnIn 2S 4/g-C 3N 4 nanocomposites with efficient photocatalytic
纳米片表现出更优异的性能,这主要归因于原位负 H 2 generation activity by a simple hydrothermal method[J]. Chemical
载 Ag:ZnIn 2 S 4 形成独特的 2D WO 3 /Ag:ZnIn 2 S 4 Z 型 Journal of Chinese Universities (高等学校化学学报), 2021, 42(10):
3160-3166.
异质结复合物体系,延长了光生电荷的传输途径, [16] YANG W L, ZHANG L, XIE J F, et al. Enhanced photoexcited
从而阻碍光生电荷的复合,又增强了光生载流子的 carrier separation in oxygen-doped ZnIn 2S 4 nanosheets for hydrogen
evolution[J]. Angewandte Chemie International Edition, 2016, 55(23):
氧化还原能力,最终能有效地提升光催化速率。该 6716-6720.
工作可为基于 WO 3 光催化剂用于可见光光解水制 [17] XU Z H (徐振和), LI H J (李泓江), GAO Y (高雨), et al.
Preparation of In 2O 3/Ag:ZnIn 2S 4 "Type Ⅱ" heterogeneous structure
氢与环境净化方面提供参考。 materials for visible light catalysis[J]. CIESC Journal (化工学报),
2022, 73(8): 3625-3635.
参考文献: [18] WANG P F, SHEN Z R, XIA Y G, et al. Atomic insights for optimum
and excess doping in photocatalysis: A case study of few-layer
[1] XU Z H, QUINTANILLA M, VETRONE F, et al. Harvesting lost Cu-ZnIn 2S 4[J]. Advanced Functional Materials, 2019, 29(3):
photons: Plasmon and upconversion enhanced broadband photocatalytic 1807013-1807021.
activity in core@shell microspheres based on lanthanide-doped NaYF 4, [19] GAO Y, XU B T, CHERIF M, et al. Atomic insights for Ag
TiO 2, and Au[J]. Advanced Functional Materials, 2015, 25(20): interstitial/substitutional doping into ZnIn 2S 4 nanoplates and intimate
2950-2960. coupling with reduced graphene oxide for enhanced photocatalytic
[2] WANG L Z (王立志), SHAN S Y (陕绍云), ZHI Y F (支云飞), et al. hydrogen production by water splitting[J]. Applied Catalysis B:
Research progress of g-C 3N 4 in photocatalytic hydrogen production: Environmental, 2020, 279: 119403-119409.
How to promote light absorption and carrier separation transport[J]. [20] GAO Y, QIAN K, XU B T, et al. Designing 2D-2D g-C 3N 4/
Fine Chemicals (精细化工), 2021, 38(11): 2199-2207. Ag:ZnIn 2S 4 nanocomposites for the high-performance conversion of
[3] ZHANG Q Z, DENG J J, XU Z H, et al. High-efficiency broadband sunlight energy into hydrogen fuel and the meaningful reduction of
C 3N 4 photocatalysts: Synergistic effects from upconversion and pollution[J]. RSC Advances, 2020, 10(54): 32652-32661.
plasmons[J]. ACS Catalysis, 2017, 7(9): 6225-6234. [21] ZHANG Q Z, YANG F, ZHOU S, et al. Broadband photocatalysts
[4] SUN J H, ZHANG J S, ZHANG M G, et al. Bioinspired hollow enabled by 0D/2D heterojunctions of near-infrared quantum
semiconductor nanospheres as photosynthetic nanoparticles[J]. Nature dots/graphitic carbon nitride nanosheets[J]. Applied Catalysis B:
Communications, 2012, 3: 1139. Environmental, 2020, 270: 118879.
[5] GAO Y (高雨), ZHANG H Y (张含烟), LIN J Y (林俊英), et al. [22] ZHAO X Y, ZHANG Y, ZHAO Y Y, et al. Ag xH 3–xPMo 12O 40/Ag
Preparation of CdS/RGO/MoS 2 composite and its photocatalytic nanorods/g-C 3N 4 1D/2D Z-scheme heterojunction for highly efficient
performance[J]. Fine Chemicals (精细化工), 2022, 39(4): 734-740. visible-light photocatalysis[J]. Dalton Transactions, 2019, 48(19):
[6] LIU L (刘立), YANG Y R (杨玉蓉), QIU M (邱敏), et al. 6484-6491.
Preparation of CDots-(001) TiO 2 nanosheets and their photocatalytic
water splitting for hydrogen production[J]. Fine Chemicals (精细化 (下转第 1775 页)