Page 49 - 精细化工2019年第12期
P. 49

第 12 期                      韦钦河,等: 4-氮杂芴-9-酮衍生物的合成及发光性质                                 ·2377·


            普通的荧光分子,但由于它们的荧光量子产率较高,                            [11]  Wang K, Zheng C J, Liu W, et al. Avoiding energy loss on TADF
                                                                   emitters:  Controlling  the  dual  conformations  of  D–A  structure
            基于 IP-7-PhCz 的 发 光 器件获 得了 最佳性 能,
                                                                   molecules  based  on  the  pseudoplanar  segments[J].  Advanced
            IP-7-PhCz 最大外量子效率为 2.8%。因此,要想获                         Materials, 2017, 29: 1701476.
                                                               [12]  Chen J X, Tao W W, Xiao Y F, et al. Isomeric thermally activated
            得高效的 TADF 染料,必须在较小的 ΔE ST 和较高的
                                                                   delayed fluorescence emitters based on indolo[2, 3-b]acridineelectron-
            PLQY 之间找到一个平衡点。                                        donor: A compromising optimization for efficient orange–red organic
                                                                   light-emitting diodes[J]. Journal of Materials Chemistry C, 2019, 7:
            参考文献:                                                  2898-2904
                                                               [13]  Mishra  K,  Pandey  A,  Singha  J,  et al.  Metal  free  TBHP-promoted
            [1]   Baldo M A, O’Brien D F, Thompson M E, et al. Excitonic singlet-   intramolecular carbonylation of arenes via radical crossdehydrogenative
                 triplet ratio in a semiconducting organic thin film[J]. Phyical Review   coupling:  Synthesis  of  indenoquinolinones,  4-azafluorenones  and
                 B, 1999, 60: 14422-14428.                         fluorenones[J].  Organic  and  Biomolecular  Chemistry,  2016,  14:
            [2]   Baldo  M  A,  O’Brien  D  F,  Thompson  M  E,  et al.  Highly  efficient   6328- 6336.
                 phosphorescent emission from organic electroluminescent devices[J].   [14]  Chen  Q,  Luo  M,  Hammershøj  P,  et al.  Microporous  polycarbazole
                 Nature, 1998, 395: 151-154.                       with  high  specific  surface  area  for  gas  storage  and  separation[J].
            [3]   Uoyama  H,  Goushi  K,  Shizu  K  H,  et al.  Highly  efficient  organic   Journal of American Chemical Society, 2012, 134 (14): 6084-6087.
                 light-emitting  diodes  from  delayed  fluorescence[J].  Nature,  2012,   [15]  Chen Q, Liu D, Zhu J, et al. Mesoporous conjugated polycarbazole
                 492: 234-238.
            [4]   Lee Y, Park S, Oh J, et al. Rigidity-induced delayed fluorescence by   with high porosity via structure tuning[J]. Macromolecules, 2014, 47:
                                                                   5926-5931.
                 orthodonor-appended triarylboron compounds: Record-high efficiency
                 in  pure  blue  fluorescent  organic  light-emitting  diodes[J].  ACS   [16]  Miyaura N, Suzuki A. Palladium-catalyzed cross-coupling reactions
                 Applied Materials Interfaces, 2017, 9: 24035-24042.     of organoboron compounds[J]. Chemical Reviews, 1995, 95: 2457-
            [5]   Rajamalli  P,  Senthilkumar  N,  Huang  P  Y,  et al.  New  molecular   2483.
                 design concurrently providing superior pure blue, thermally activated   [17]  Chen J X, Tao W W, Xiao Y F, et al. Isomeric thermally activated
                 delayed fluorescence and optical out-coupling efficiencies[J]. Journal   delayed fluorescence emitters based on indolo[2, 3-b]acridine electrondonor:
                 of the American Chemical Society, 2017, 139: 10948-10951.     A compromising optimization for efficient orange–red organic light-
            [6]   Pan Y, Li W, Zhang S, et al. High yields of singlet excitons in organic   emitting diodes[J]. Journal of Materials Chemistry C, 2019, 7: 2898-
                 electroluminescence through two paths of cold and hot excitons[J].   2904.
                 Advanced Optical Materials, 2014, 2: 510-515.     [18]  Rajamalli  P,  Senthilkumar  N,  Gandeepan  P,  et al.  A  method  for
            [7]   Zhang  Q  S,  Li  B,  Huang  S  P,  et al.  Efficient  blue  organic  light-   reducing  the  singlet-triplet  energy  gaps  of  TADF  materials  for
                 emitting diodes employing thermally activated delayed fluorescence   improving  the  blue  OLED  efficiency[J].  ACS  Applied  Materials
                 [J]. Nature Photonics, 2014, 8: 326-332.          Interfaces, 2016, 8: 27026-27034.
            [8]   Li Y F, Xie G H, Gong S D, et al. Dendronized delayed fluorescence   [19]  Zhang  J,  Ding  D  X,  Wei  Y,  et al.  Multiphosphine-oxide  hosts  for
                 emitters for non-doped, solution-processed organic light-emitting diodes   ultralow-voltage-driven true-blue thermally activated delayed fluorescence
                 with  high  efficiency  and low  efficiency  roll-off  simultaneously:  Two   diodes with external quantum efficiency beyond 20%[J]. Advanced
                 parallel emissive channels[J]. Chemical Science, 2016, 7: 5441-5447.     Materials, 2016, 28: 479-485.
            [9]   Wang  S  P, Cheng Z,  Song X X,  et al.  Highly  efficient  long-   [20]  Nasu K, Nakagawa T, Nomura H, et al. A highly luminescent spiro-
                 wavelength thermally activated delayed fluorescence OLEDs based   anthracenone-based organic light-emitting diode exhibiting thermally
                 on  dicyanopyrazinophenanthrene  derivatives[J].  ACS  Applied   activated delayed fluorescence[J]. Chemical Communications, 2013,
                 Materials Interfaces, 2017, 9: 9892-9901.         49: 10385-10387.
            [10]  Zhang  D  D,  Qiao  J,  Zhang  D  Q,  et al.  Ultrahigh-efficiency  green   [21]  Masui  K,  Nakanotani  H,  Adachi  C,  et al.  Analysis  of  exciton
                 PHOLEDs with a voltage under 3 V and a power efficiency of nearly   annihilation in high-efficiency sky-blue organic light-emitting diodes
                                          −2
                       −1
                 110 lm W  at luminance of 10000 cd m [J]. Advanced Materials,   with thermally activated delayed fluorescence[J]. Organic Electronics,
                 2017, 29: 1702847.                                2013, 14: 2721-2726.


            (上接第 2370 页)                                       [55]  Zhao Meiling (赵美玲), Gong Tao (弓韬), Li Dan (李丹), et al. Study
                                                                   on cyclodextrins polymer functionalized Fe 3O 4 magnetic nanoparticles
            [50]  Zhang  Yan  (张艳),  Song  Xinyuan  (宋新媛),  Zhang  Xiong  (张雄).   as  drug  carrier[J].  Journal  of  Shanxi  University  (Natural  Science
                 Preparation  and  application  of  β-cyclodextrin  polymers  supported   Edition) (山西大学学报:  自然科学版), 2018, 41(2): 182-188.
                 Fe 3O 4/TiO 2[J].  Chemical  Research  and  Application  (化学研究与应  [56]  Parmar  V  K,  Patel  G,  Nedal  Y.  20-Responsive  cyclodextrins  as
                 用), 2018, 30(8): 1402-1408.
            [51]  Huarte J, Espuelas S, Lai Y, et al. Oral deliveryof camptothecin using   polymeric  carriers  for  drug  delivery  applications[J].  Stimuli
                 cyclodextrin/poly (anhydride) nanoparticles[J]. International Journal   Responsive Polymeric Nanocarriers for Drug Delivery Applications,
                 of Pharmaceutics, 2016, 506(1): 116-128.          2018, 1: 555-580.
            [52]  Menezes  P  D  P,  Andrade  T  D  A,  Frankl  A,  et al.  Advances  of   [57]  Chen  Li,  Zhang  Zhe,  Chen  Xiaofei,  et al.  Fabrication  of  modular
                 nanosystems  containing  cyclodextrins  and  their  applications  in   multifunctional  delivery  for  antitumor  drugs  based  on  host–guest
                 pharmaceuticals[J].  International  Journal  of  Pharmaceutics,  2019,   recognition[J]. Acta Biomaterialia, 2015, 18(5): 168-175.
                 559: 312-328.                                 [58]  Guo Jialiang, Lin Yuanjing, Xiao Yuan, et al. Recent developments in
            [53]  Zeng  Junping  ( 曾君萍 ).  Synthesis  and  assembly  behavior  of   cyclodextrin   functionalized   monolithic   columns   for   the
                 cyclodextrin polymers[D]. Wuhan: Wuhan University of Technology   enantioseparation  of  chiral  drugs[J].  Journal  of  Pharmaceutical &
                 (武汉理工大学), 2012.                                   Biomedical Analysis, 2016, 130(10): 110-125.
            [54]  Lee C W, Kim S J, Youn Y S, et al. Preparation of bitter taste masked   [59]  Chu  Yongjie  (初永杰).  Synthesis  of  hyperbranched  polysiloxane
                 cetirizine  dihydrochloride/β-cyclodextrin  inclusion  complex  by   grafted  β-cyclodextrins  and  crown  ether  and  its  application  in
                 supercritical  antisolvent  (SAS)  process[J].  Journal  of  Supercritical   separation  of  chiral  compounds  by  capillary  electrophoresis[D].
                 Fluids, 2010, 55(1): 348-357.                     Jinan: University of Jinan (济南大学).
   44   45   46   47   48   49   50   51   52   53   54