Page 159 - 201903
P. 159
第 3 期 王瑞平,等: 纳米纤维素/环氧树脂复合物用作柔性有机太阳能电池基底 ·505·
明,CNF 与 Epoxy 复合之后的薄膜透明,热学性能 [20] Jin Hyo Seong, Chang Jin Hae, Kim Jeong Cheol. Synthesis and
characterization of colorless polyimide nanocomposite films containing
稳定,适合用作器件的基底材料,这为制备低 CTE、 pendant trifluoromethyl groups[J]. Macromolecular Research, 2008,
16(6): 503-509.
高透光率复合膜,解决柔性 OSC 基底热稳定性差的 [21] Lv Jiankun (吕建坤), Ke Yucai (柯毓才), Qi Zongneng (漆宗能), et
问题提供了新思路,也为进一步获取低成本、透明 al. Synthesis and mechanical properties of epoxy/clay nanocomposites
[J]. Acta Materiae Compositae sinica(复合材料学报), 2002, 19(1):
和热性能良好的柔性 OSC 基底新材料、提高器件的 117-121.
[22] Zheng Yaping (郑亚萍), Ning Rongchang (宁荣昌). Progress of
工作效率及使用寿命提供了理论基础。 epoxy-nanocomposites[J]. New Chemical Materials (化工新型材
料), 2000, 28(3): 17-18.
参考文献: [23] Pan Jia (潘佳). Cellulose nanofibers-reinforced epoxy resin composite
[D]. Nanjing: Nanjing Forestry University(南京林业大学), 2012.
[1] Rudolph Melanie, Yoshida Tsukasa, Miura Hidetoshi, et al. [24] Kou Yanping (寇彦平). The influence of nanocellulose on structure
Improvement of light harvesting by addition of a long-wavelength and performanceof the modified epoxy resin system[D]. Hangzhou:
absorber in dye-sensitized solar cells based on ZnO and indoline Zhejiang A&F University (浙江农林大学), 2015.
dyes[J]. Journal of Physical Chemistry C, 2015, 119(3): 1298-1311. [25] Yan Ming (颜明), Song Bing (宋冰), Lu Hailong (陆海龙), et al.
[2] Lungenschmied Christoph, Dennler Gilles, Neugebauer Helmut, et Preparation and characterization of cellulose-nanofbers/epoxy
al. Flexible, long-lived, large-area, organic solar cells[J]. Solar composites[J]. China Pulp and Paper Industry (中华纸业), 2016,
Energy Materials & Solar Cells, 2007, 91(5): 379-384. 37(14): 23-26.
[3] Bao Yunna (鲍允娜). Zinc-plated photoanode for the fabric-type [26] Pan Jia (潘佳), Li Dagang (李大纲), Deng Qiaoyun (邓巧云), et al.
dye-sensitized solar cells[D]. Chongqing: Chongqing University (重 Light transmittance study on cellulose nanofibers/epoxy resin composite
庆大学), 2015. film[J]. China Plastics Industry (塑料工业), 2012, 40(9): 108-111.
[4] Hanada Toru, NegishiTuyoto, Shiroishi Isao, et al. Plastic substrate [27] Shimazaki Yuzuru, Miyazaki Yasuo, Takezawa Yoshitaka, et al. Excellent
with gas barrier layer and transparent conductive oxide thin film for thermal conductivity of transparent cellulose nanofiber/ epoxy resin
flexible displays[J]. Thin Solid Films, 2010, 518(11): 3089-3092. nanocomposites[J]. Biomacromolecules, 2007, 8(9): 2976-2978.
[5] Sun Mingxuan, Cui Xiaoli. Needle-shaped 3D dye-sensitized solar [28] Ye Zhipeng (叶志鹏), Zhang Yan (张艳), Kou Yanping (寇彦平), et
cells using anodized Ti wire and Pt nanoparticle/carbon fiber al. Effect of cellulose nanofiber on structure and mechanical properties
electrodes[J]. Journal of Power Sources, 2013, 223: 74-78. of epoxy/poly(ε-caprolactone)blends[J]. Polymer Materials Science
and Engineering (高分子材料科学与工程), 2015, 31(11): 91-96.
[6] Li Ming (李明), Mi Yiming (宓一鸣), Yan Zhi (言智). Solar cells [29] Dong Yuancai (董元彩), Meng Wei (孟卫). Preparation and property
prepared on different flexible substrates[J]. Chinese Journal of Power
Sources (电源技术), 2013, 37(8): 1385-1387. of EP/TiO 2 nanocomposite[J]. China Plastics Industry (塑料工业),
[7] Kim Se Hwan, Cheon Jun Hyuk, Kim Eung Bum, et al. High- 1999, 27(6): 37-38.
performance hydrogenated amorphous silicon TFT on flexible metal [30] Lu Jue, Askeland Per, Drzal Lawrence T. Surface modification of
foil with polyimide planarization[J]. Journal of Non-Crystalline microfibrillated cellulose for epoxy composite applications[J].
Polymer, 2008, 49(5): 1285-1296.
Solids, 2008, 354: 2529-2533. [31] Isogai Akira, Saito Tsuguyuki, Fukuzumi Hayaka. TEMPO-oxidized
[8] Chen Yuanfu, Mei Yongfeng, Kaltofen Rainer, et al. Towards flexible cellulose nanofibers[J]. Nanoscale, 2011, 3(1): 71-85.
magnetoelectronics: buffer-enhanced and mechanically tunable GMR [32] Wagberg Lars, Decher Gero, Norgren Magnus, et al. The build-up of
of Co/Cu multilayers on plastic substrates[J]. Advanced Materials, polyelectrolyte multilayers of microfibrillated cellulose and cationic
2010, 20(17): 3224-3228. polyelectrolytes[J]. Langmuir the Acs Journal of Surfaces & Colloids,
[9] Yagyu Hitomi, Saito Tsuguyuki, Isogai Akira, et al. Chemical 2008, 24(3): 784-795.
modification of cellulose nanofibers for the production of highly [33] Janardhnan Sreekumar, Sain Mohini M. Isolation of cellulose
thermal resistant and optically transparent nanopaper for paper devices microfibrils-an enzymatic approach[J]. Bioresources, 2007, 1(2): 176-188.
[J]. Acs Applied Materials & Interfaces, 2015, 7(39): 22012-22017. [34] Wang Qian (王茜). Preparation and properties of cellulose nanofibers
[10] Chen Jinbo (陈进波). Design and preparation of new flexible high paper-based flexible electrochromic supercapacitors[D]. Beijing:
transparent paper material and its application research[D]. Guangzhou: Beijing Institute of Technology (北京理工大学), 2014.
South China University of Technology (华南理工大学), 2016. [35] Fukuzumi Hayaka, Saito Tsuguyuki, Iwata Tadahisa, et al. Transparent
[11] Fang Zhiqiang, Zhu Hongli, Yuan Yongbo, et al. Novel and high gas barrier films of cellulose nanofibers prepared by TEMPO-
nanostructured paper with ultrahigh transparency and ultrahigh haze mediated oxidation[J]. Biomacromolecules, 2009, 10(1): 162-165.
for solar cells[J]. Nano Letters, 2014, 14(2): 765-773. [36] Yao Yonggang, Tao Jinsong, Zou Jianhua, et al. Light management in
[12] Zhang Yingchen (张迎晨), Wu Hongyan (吴红艳). Flexible or plastic–paper hybrid substrate towards high-performance optoelectronics
thin-film solar cells with epoxy resin base film and its preparation [J]. Energy & Environmental Science, 2016, 9(7): 2278-2285.
method: CN103897339A[P]. 2014-07-02. [37] Okita Yusuke, Fujisawa Shuji, Saito Tsuguyuki, et al. TEMPO-
[13] Weerasinghe Hasitha C, Huang Fuzhi, Cheng Yibing. Fabrication of oxidized cellulose nanofibrils dispersed in organic solvents[J].
flexible dye sensitized solar cells on plastic substrates[J]. Nano Biomacromolecules, 2011, 12(2): 518-522.
Energy, 2013, 2(2): 174-189. [38] Nogi Masaya, Yano Hiroyuki. Transparent nanocomposites based on
[14] Ko Seung Hwan, Chung Jaewon, Pan Heng, et al. Fabrication of cellulose produced by bacteria offer potential innovation in the
multilayer passive and active electric components on polymer using electronics device industry[J]. Advanced Materials, 2010, 20(10):
inkjet printing and low temperature laser processing[J]. Sensors & 1849-1852.
Actuators A: Physical, 2007, 134(1): 161-168. [39] Zeng Xiaoyan, Zhang Qikai, Yu Rongmin, et al. A new transparent
[15] Zhou Shijie (周世杰). The modification of PEDOT: PSS films and its conductor: silver nanowire film buried at the surface of a transparent
application in flexible organic light-emitting diodes and organic solar polymer[J]. Advanced Materials, 2010, 22(40): 4484-4488.
cells[D]. Guangzhou: South China University of Technology (华南理 [40] Nogi Masaya, Yano Hiroyuki. Optically transparent nanofiber sheets
工大学), 2014. by deposition of transparent materials: a concept for a roll-to-roll
[16] Zardetto Valerio, Brown Thomas M, Reale Andrea, et al. Substrates processing[J]. Applied Physics Letters, 2009, 94(23): 374-376.
for flexible electronics: a practical investigation on the electrical, [41] Huang Jia, Zhu Hongli, Chen Yuchen, et al. Highly transparent and
film flexibility, optical, temperature, and solvent resistance properties flexible nanopaper transistors[J]. Acs Nano, 2013, 7(3): 2106-2113.
[J]. Journal of Polymer Science, Part B: Polymer Physics, 2011, [42] Fu Junjun (付俊俊), Tian Yan (田彦), Tao Jinsong (陶劲松). The
49(9): 638-648. surface groups and chemical modification of nanocrystalline
[17] Park Yong Seok, Kim Han Ki, Jeong Soon Wook, et al. Highly cellulose[J]. China Pulp & Paper (中国造纸), 2018, 37(1): 50–59.
flexible indium zinc oxide electrode grown on PET substrate by cost [43] Nogi Masaya, Iwamoto Shinichiro, Nakagaito Antonio Norio, et al.
efficient roll-to-roll sputtering process[J]. Thin Solid Films, 2010, Optically transparent nanofiber paper[J]. Advanced Materials, 2010,
518(11): 3071-3074. 21(16): 1595-1598.
[18] Choi Myeon Cheon, Hwang Jae Chul, Kim Chiwan, et al. New [44] Fan Xi, Wang Jinzhao, Wang Hanbin, et al. Bendable ITO-free
colorless substrates based on polynorbornene-chlorinated polyimide organic solar cells with highly conductive and flexible PEDOT: PSS
copolymers and their application for flexible displays[J]. Journal of electrodes on plastic substrates[J]. Acs Applied Materials &
Polymer Science, Part A: Polymer Chemistry, 2010, 48(8): 1806-1814. Interfaces, 2015, 7(30): 16287-16295.
[19] Jin Jungho, Ko Ji Hoon, Yang Seung Cheol, et al. Rollable transparent [45] Liao Huaqiang, Wu Yiqiong, Wu Meiyu, et al. Aligned electrospun
glass-fabric reinforced composite substrate for flexible devices[J]. cellulose fibers reinforced epoxy resin composite films with high
Advanced Materials, 2010, 22(40): 4510-4515. visible light transmittance[J]. Cellulose, 2012, 19(1): 111-119.