Page 159 - 201903
P. 159

第 3 期               王瑞平,等:  纳米纤维素/环氧树脂复合物用作柔性有机太阳能电池基底                                   ·505·


            明,CNF 与 Epoxy 复合之后的薄膜透明,热学性能                       [20]  Jin  Hyo  Seong,  Chang  Jin  Hae,  Kim  Jeong  Cheol.  Synthesis  and
                                                                   characterization of colorless polyimide nanocomposite films containing
            稳定,适合用作器件的基底材料,这为制备低 CTE、                              pendant trifluoromethyl groups[J]. Macromolecular Research, 2008,
                                                                   16(6): 503-509.
            高透光率复合膜,解决柔性 OSC 基底热稳定性差的                          [21]  Lv Jiankun (吕建坤), Ke Yucai (柯毓才), Qi Zongneng (漆宗能), et
            问题提供了新思路,也为进一步获取低成本、透明                                 al. Synthesis and mechanical properties of epoxy/clay nanocomposites
                                                                   [J].  Acta  Materiae  Compositae  sinica(复合材料学报),  2002,  19(1):
            和热性能良好的柔性 OSC 基底新材料、提高器件的                              117-121.
                                                               [22]  Zheng  Yaping  (郑亚萍),  Ning  Rongchang  (宁荣昌).  Progress  of
            工作效率及使用寿命提供了理论基础。                                      epoxy-nanocomposites[J].  New  Chemical  Materials  (化工新型材
                                                                   料), 2000, 28(3): 17-18.
            参考文献:                                              [23]  Pan Jia (潘佳). Cellulose nanofibers-reinforced epoxy resin composite
                                                                   [D]. Nanjing: Nanjing Forestry University(南京林业大学), 2012.
            [1]   Rudolph  Melanie,  Yoshida  Tsukasa,  Miura  Hidetoshi,  et al.     [24]  Kou Yanping (寇彦平). The influence of nanocellulose on structure
                 Improvement  of  light  harvesting  by  addition  of  a  long-wavelength   and performanceof the modified epoxy resin system[D]. Hangzhou:
                 absorber  in  dye-sensitized  solar  cells  based  on  ZnO  and  indoline   Zhejiang A&F University (浙江农林大学), 2015.
                 dyes[J]. Journal of Physical Chemistry C, 2015, 119(3): 1298-1311.     [25]  Yan  Ming  (颜明),  Song  Bing  (宋冰),  Lu  Hailong  (陆海龙),  et al.
            [2]   Lungenschmied  Christoph,  Dennler  Gilles,  Neugebauer  Helmut,  et   Preparation  and  characterization  of  cellulose-nanofbers/epoxy
                 al.  Flexible,  long-lived,  large-area,  organic  solar  cells[J].  Solar   composites[J].  China  Pulp  and  Paper  Industry  (中华纸业),  2016,
                 Energy Materials & Solar Cells, 2007, 91(5): 379-384.     37(14): 23-26.
            [3]   Bao  Yunna  (鲍允娜).  Zinc-plated  photoanode  for  the  fabric-type   [26]  Pan Jia (潘佳), Li Dagang (李大纲), Deng Qiaoyun (邓巧云), et al.
                 dye-sensitized solar cells[D]. Chongqing: Chongqing University (重  Light transmittance study on cellulose nanofibers/epoxy resin composite
                 庆大学), 2015.                                       film[J]. China Plastics Industry (塑料工业), 2012, 40(9): 108-111.
            [4]   Hanada Toru, NegishiTuyoto, Shiroishi Isao, et al. Plastic substrate   [27]  Shimazaki Yuzuru, Miyazaki Yasuo, Takezawa Yoshitaka, et al. Excellent
                 with gas barrier layer and transparent conductive oxide thin film for   thermal conductivity of transparent cellulose nanofiber/ epoxy resin
                 flexible displays[J]. Thin Solid Films, 2010, 518(11): 3089-3092.     nanocomposites[J]. Biomacromolecules, 2007, 8(9): 2976-2978.
            [5]   Sun  Mingxuan,  Cui  Xiaoli.  Needle-shaped  3D  dye-sensitized  solar   [28]  Ye Zhipeng (叶志鹏), Zhang Yan (张艳), Kou Yanping (寇彦平), et
                 cells  using  anodized  Ti  wire  and  Pt  nanoparticle/carbon  fiber   al. Effect of cellulose nanofiber on structure and mechanical properties
                 electrodes[J]. Journal of Power Sources, 2013, 223: 74-78.     of  epoxy/poly(ε-caprolactone)blends[J].  Polymer  Materials  Science
                                                                   and Engineering (高分子材料科学与工程), 2015, 31(11): 91-96.
            [6]   Li  Ming  (李明),  Mi  Yiming  (宓一鸣), Yan Zhi (言智).  Solar  cells   [29]  Dong Yuancai (董元彩), Meng Wei (孟卫). Preparation and property
                 prepared on different flexible substrates[J]. Chinese Journal of Power
                 Sources (电源技术), 2013, 37(8): 1385-1387.           of  EP/TiO 2  nanocomposite[J].  China  Plastics  Industry  (塑料工业),
            [7]   Kim  Se  Hwan,  Cheon  Jun  Hyuk,  Kim  Eung  Bum,  et al.  High-   1999, 27(6): 37-38.
                 performance hydrogenated amorphous silicon TFT on flexible metal   [30]  Lu  Jue,  Askeland  Per,  Drzal  Lawrence  T.  Surface  modification  of
                 foil  with  polyimide  planarization[J].  Journal  of  Non-Crystalline   microfibrillated  cellulose  for  epoxy  composite  applications[J].
                                                                   Polymer, 2008, 49(5): 1285-1296.
                 Solids, 2008, 354: 2529-2533.                 [31]  Isogai Akira, Saito Tsuguyuki, Fukuzumi Hayaka. TEMPO-oxidized
            [8]   Chen Yuanfu, Mei Yongfeng, Kaltofen Rainer, et al. Towards flexible   cellulose nanofibers[J]. Nanoscale, 2011, 3(1): 71-85.
                 magnetoelectronics: buffer-enhanced and mechanically tunable GMR   [32]  Wagberg Lars, Decher Gero, Norgren Magnus, et al. The build-up of
                 of  Co/Cu  multilayers  on  plastic  substrates[J].  Advanced  Materials,   polyelectrolyte multilayers of microfibrillated cellulose and cationic
                 2010, 20(17): 3224-3228.                          polyelectrolytes[J]. Langmuir the Acs Journal of Surfaces & Colloids,
            [9]   Yagyu  Hitomi,  Saito  Tsuguyuki,  Isogai  Akira,  et al.  Chemical   2008, 24(3): 784-795.
                 modification  of  cellulose  nanofibers  for  the  production  of  highly   [33]  Janardhnan  Sreekumar,  Sain  Mohini  M.  Isolation  of  cellulose
                 thermal resistant and optically transparent nanopaper for paper devices   microfibrils-an enzymatic approach[J]. Bioresources, 2007, 1(2): 176-188.
                 [J]. Acs Applied Materials & Interfaces, 2015, 7(39): 22012-22017.     [34]  Wang Qian (王茜). Preparation and properties of cellulose nanofibers
            [10]  Chen Jinbo (陈进波). Design and preparation of new flexible high   paper-based  flexible  electrochromic  supercapacitors[D].  Beijing:
                 transparent paper material and its application research[D]. Guangzhou:   Beijing Institute of Technology (北京理工大学), 2014.
                 South China University of Technology (华南理工大学), 2016.     [35]  Fukuzumi Hayaka, Saito Tsuguyuki, Iwata Tadahisa, et al. Transparent
            [11]  Fang  Zhiqiang,  Zhu  Hongli,  Yuan  Yongbo,  et al.  Novel   and high gas barrier films of cellulose nanofibers prepared by TEMPO-
                 nanostructured paper with ultrahigh transparency and ultrahigh haze   mediated oxidation[J]. Biomacromolecules, 2009, 10(1): 162-165.
                 for solar cells[J]. Nano Letters, 2014, 14(2): 765-773.     [36]  Yao Yonggang, Tao Jinsong, Zou Jianhua, et al. Light management in
            [12]  Zhang  Yingchen  (张迎晨),  Wu  Hongyan  (吴红艳).  Flexible  or   plastic–paper hybrid substrate towards high-performance optoelectronics
                 thin-film  solar  cells  with  epoxy  resin base  film  and  its  preparation   [J]. Energy & Environmental Science, 2016, 9(7): 2278-2285.
                 method: CN103897339A[P]. 2014-07-02.          [37]  Okita  Yusuke,  Fujisawa  Shuji,  Saito  Tsuguyuki,  et al.  TEMPO-
            [13]  Weerasinghe Hasitha C, Huang Fuzhi, Cheng Yibing. Fabrication of   oxidized  cellulose  nanofibrils  dispersed  in  organic  solvents[J].
                 flexible  dye  sensitized  solar  cells  on  plastic  substrates[J].  Nano   Biomacromolecules, 2011, 12(2): 518-522.
                 Energy, 2013, 2(2): 174-189.                  [38]  Nogi Masaya, Yano Hiroyuki. Transparent nanocomposites based on
            [14]  Ko  Seung  Hwan,  Chung  Jaewon,  Pan  Heng,  et al.  Fabrication  of   cellulose  produced  by  bacteria  offer  potential  innovation  in  the
                 multilayer passive and active electric components on polymer using   electronics  device  industry[J].  Advanced  Materials,  2010,  20(10):
                 inkjet  printing  and  low  temperature  laser  processing[J].  Sensors  &   1849-1852.
                 Actuators A: Physical, 2007, 134(1): 161-168.     [39]  Zeng Xiaoyan, Zhang Qikai, Yu Rongmin, et al. A new transparent
            [15]  Zhou Shijie (周世杰). The modification of PEDOT: PSS films and its   conductor: silver nanowire film buried at the surface of a transparent
                 application in flexible organic light-emitting diodes and organic solar   polymer[J]. Advanced Materials, 2010, 22(40): 4484-4488.
                 cells[D]. Guangzhou: South China University of Technology (华南理  [40]  Nogi Masaya, Yano Hiroyuki. Optically transparent nanofiber sheets
                 工大学), 2014.                                       by  deposition  of  transparent  materials:  a  concept  for  a  roll-to-roll
            [16]  Zardetto Valerio, Brown Thomas M, Reale Andrea, et al. Substrates   processing[J]. Applied Physics Letters, 2009, 94(23): 374-376.
                 for  flexible  electronics:  a  practical  investigation  on  the  electrical,   [41]  Huang Jia, Zhu Hongli, Chen Yuchen, et al. Highly transparent and
                 film flexibility, optical, temperature, and solvent resistance properties   flexible nanopaper transistors[J]. Acs Nano, 2013, 7(3): 2106-2113.
                 [J].  Journal  of  Polymer  Science,  Part  B:  Polymer  Physics,  2011,   [42]  Fu  Junjun  (付俊俊),  Tian  Yan  (田彦), Tao Jinsong (陶劲松).  The
                 49(9): 638-648.                                   surface  groups  and  chemical  modification  of  nanocrystalline
            [17]  Park  Yong  Seok,  Kim  Han  Ki,  Jeong  Soon  Wook,  et al.  Highly   cellulose[J]. China Pulp & Paper (中国造纸), 2018, 37(1): 50–59.
                 flexible indium zinc oxide electrode grown on PET substrate by cost   [43]  Nogi Masaya, Iwamoto Shinichiro, Nakagaito Antonio Norio, et al.
                 efficient  roll-to-roll  sputtering  process[J].  Thin  Solid  Films,  2010,   Optically transparent nanofiber paper[J]. Advanced Materials, 2010,
                 518(11): 3071-3074.                               21(16): 1595-1598.
            [18]  Choi  Myeon  Cheon,  Hwang  Jae  Chul,  Kim  Chiwan,  et al.  New   [44]  Fan  Xi,  Wang  Jinzhao,  Wang  Hanbin,  et al.  Bendable  ITO-free
                 colorless substrates based on polynorbornene-chlorinated polyimide   organic solar cells with highly conductive and flexible PEDOT: PSS
                 copolymers and their application for flexible displays[J]. Journal of   electrodes  on  plastic  substrates[J].  Acs  Applied  Materials  &
                 Polymer Science, Part A: Polymer Chemistry, 2010, 48(8): 1806-1814.     Interfaces, 2015, 7(30): 16287-16295.
            [19]  Jin Jungho, Ko Ji Hoon, Yang Seung Cheol, et al. Rollable transparent   [45]  Liao Huaqiang, Wu Yiqiong, Wu Meiyu, et al. Aligned electrospun
                 glass-fabric  reinforced  composite  substrate  for  flexible  devices[J].   cellulose  fibers  reinforced  epoxy  resin  composite  films  with  high
                 Advanced Materials, 2010, 22(40): 4510-4515.      visible light transmittance[J]. Cellulose, 2012, 19(1): 111-119.
   154   155   156   157   158   159   160   161   162   163   164