Page 232 - 201904
P. 232
·758· 精细化工 FINE CHEMICALS 第 36 卷
ZnS/AC 对水溶液中铀酰离子的吸附性能。在铀酰 Progress in Chemistry, 2017, 29(1): 83-92.
离子初始质量浓度为 35 mg/L、pH=6、吸附时间为 [11] Azad F N, Ghaedi M, Asfaram A, et al. Optimization of the process
parameters for the adsorption of ternary dyes by Ni doped FeO(OH)-
120 min、投加量为 10 mg、处理温度为 50 ℃的条件
NWs-AC using response surface methodology and artificial neural
下,吸附剂对铀酰离子的吸附量为 63.75 mg/g。吸 network[J]. Rsc Advances, 2016, 6(24): 19768-19779.
附过程符合准二级动力学方程和 Langmuir 吸附等 [12] Ghaedi M, Hajjati S, Mahmudi Z, et al. Modeling of competitive
温线模型,热力学参数G<0、S>0、H>0,表明 ultrasonic assisted removal of the dyes-methylene blue and safranin-
O using Fe 3O 4, nanoparticles[J]. Chemical Engineering Journal,
该吸附过程是一个自发的吸热过程。复合材料
2015, 268: 28-37.
ZnS/AC 对铀酰离子具有良好的吸附性能,是一种性 [13] Fang L, Li L, Qu Z, et al. A novel method for the sequential removal
能良好的环保吸附材料。 and separation of multiple heavy metals from wastewater[J]. Journal
of Hazardous Materials, 2017, 342: 617-624.
参考文献: [14] Zhu Lei (朱磊), Li Hailong (李海龙), Zhao Yongchun (赵永椿), et
0
al. Experimental Study on Hg Adsorption by Nano-ZnS[J]. Journal
[1] Verma A K, Dash R R, Bhunia P. A review on chemical coagulation/
of Engineering Thermophysics, 2017, 38(1): 203-207.
flocculation technologies for removal of colour from textile
[15] Zhai Haoying (翟好英), Zou Hao (邹豪). Synthesis of Cr, Ag Co-
wastewaters[J]. Journal of Environmental Management, 2012, 93(1):
doped ZnS nanomaterials and its adsorption capability for reactive
154-168.
dyes[J]. Spectroscopy and Spectral Analysis, 2017, 37(8):
[2] Asgher M, Bhatti H N. Evaluation of thermodynamics and effect of
2638-2644.
chemical treatments on sorption potential of Citrus waste biomass for
[16] Asfaram A, Ghaedi M, Hajati S, et al. Simultaneous ultrasound-
removal of anionic dyes from aqueous solutions[J]. Ecological
assisted ternary adsorption of dyes onto copper-doped zinc sulfide
Engineering, 2012, 38(1): 79-85.
nanoparticles loaded on activated carbon: Optimization by response
[3] Körbahti B K, Artut K, Gecgel C, et al. Electrochemical
surface methodology[J]. Spectrochimica Acta Part A Molecular &
decolorization of textile dyes and removal of metal ions from textile
Biomolecular Spectroscopy, 2015, 145: 203-212.
dye and metal ion binary mixtures[J]. Chemical Engineering Journal,
[17] Zhu Z, Zhang M, Liu F, et al. Effect of polymeric matrix on the
2011, 173(3): 677-688.
adsorption of reactive dye by anion-exchange resins[J]. Journal of the
[4] Asfaram A, Ghaedi M, Ghezelbash G R, et al. Biosorption of
Taiwan Institute of Chemical Engineers, 2016, 62: 98-103.
malachite green by novel biosorbent Yarrowia lipolytica isf7:
[18] Wang L, Dai J, Liu X, et al. Morphology-controlling synthesis of
Application of response surface methodology[J]. Journal of Molecular
ZnS through a hydrothermal/solvthermal method[J]. Ceramics
Liquids, 2016, 214: 249-258.
International, 2012, 38(3): 1873-1878.
[5] Azad F N, Ghaedi M, Dashtian K, et al. Ultrasonically assisted
2+
[19] Pala I R, Brock S L. ZnS nanoparticle gels for remediation of Pb
hydrothermal synthesis of activated carbon-HKUST-1-MOF hybrid
2+
and Hg polluted water[J]. Acs Applied Materials & Interfaces,
for efficient simultaneous ultrasound-assisted removal of ternary
2012, 4(4): 2160-2167.
organic dyes and antibacterial investigation: Taguchi optimization[J].
Ultrasonics Sonochemistry, 2016, 31: 383-393. [20] Wang G, Wang X, Chai X, et al. Adsorption of uranium (Ⅵ) from
[6] Ghaedi M, Rahimi M R, Ghaedi A M, et al. Application of least aqueous solution on calcined and acid-activated kaolin[J]. Applied
squares support vector regression and linear multiple regression for Clay Science, 2010, 47(3/4): 448-451.
modeling removal of methyl orange onto tin oxide nanoparticles [21] Sureshkumar M K, Das D, Mallia M B, et al. Adsorption of uranium
loaded on activated carbon and activated carbon prepared from from aqueous solution using chitosan-tripolyphosphate (CTPP)
Pistacia atlantica wood[J]. Journal of Colloid & Interface Science, beads[J]. Journal of Hazardous Materials, 2010, 184(1/2/3): 65-72.
2016, 461: 425-434. [22] Zhang M, Gao B, Yao Y, et al. Synthesis of porous MgO-biochar
[7] Tan I A, Ahmad A L, Hameed B H. Adsorption of basic dye on nanocomposites for removal of phosphate and nitrate from aqueous
high-surface-area activated carbon prepared from coconut husk: solutions[J]. Chemical Engineering Journal, 2012, 210(4): 26-32.
Equilibrium, kinetic and thermodynamic studies[J]. Journal of [23] Gode F, Pehlivan E. A comparative study of two chelating ion-
Hazardous Materials, 2008, 154(1): 337-346. exchange resins for the removal of chromium(Ⅲ) from aqueous
[8] Gupta V K, Jain R, Varshney S. Electrochemical removal of the solution[J]. Journal of Hazardous Materials, 2003, 100(1/2/3): 231-
hazardous dye Reactofix Red 3 BFN from industrial effluents[J]. 243.
Journal of Colloid & Interface Science, 2007, 312(2): 292-296. [24] Langmuir I. The adsorption of gases on plane surfaces of glass, mica
[9] Gupta V K, Jain R, Mittal A, et al. Photochemical degradation of the and platinum[J]. Journal of Chemical Physics, 2015, 40(12): 1361- 1403.
hazardous dye Safranin-T using TiO 2 catalyst[J]. J Colloid Interface [25] Çınar S, Ümit H K, Aydemir T, et al. An efficient removal of RB5
Sci, 2007, 309(2): 464-469. from aqueous solution by adsorption onto nano-ZnO/chitosan
[10] Huang Xueqiong (黄雪琼), Kong Long (孔龙), Huang Shouqiang composite beads[J]. International Journal of Biological Macromolecules,
(黄寿强), et al. Metal sulfide nanomaterials based adsorbents[J]. 2017, 96: 459-465.