Page 17 - 201905
P. 17
第 5 期 匡碧锋,等: 生物质催化转化制备 1,5-戊二醇和 1,6-己二醇研究进展 ·785·
物 1,6-己二醇,产率达到 57.8% [34] 。固定床反应器催 [11] Lu Hua (鲁华), Gao Wei (高伟). Industry status and application of
1,6-hexanediol[J]. Fine and Specialty Chemicals (精细与专用化学
化剂分层装填的方式明显提高了 1,6-己二醇的产率。 品), 2013, 21(7): 9-11.
[12] Gu Guoyao (顾国耀), Xu Xiaoqing (徐晓清), Chen Shiping (陈仕
萍), et al. Industrial side-line test of catalyst for dimethyl adipate
3 结论与展望 hydrogenation to 1,6-hexanediol[J]. Industrial Catalyst (工业催化),
2018, 26(6): 64-68.
[13] Huang Jiyue (黄集钺), Bai Xiaolin (白晓琳), Cheng Guangjian (程
1,5-戊二醇和 1,6-己二醇是两种重要的化工中 光剑), et al. Preparation and application of 1,5-pentanediol[J].
Chemical Intermediate (化工中间体), 2007, (2): 11-13, 26.
间体,可以通过石油基和生物质基途径制取,但由 [14] Liang Changhai (梁长海), Li Chuang (李闯), Yin Dongdong (殷东
于环境问题和石化资源的日益减少,以可再生的生 东 ), et al. Continuous esterification of 1,6-adipic acid to 1,6-
hexanediol: CN106905111A[P]. 2017-06-30.
物质资源通过生物炼制的方法制取高级二元醇具有 [15] Fan Dongna (樊冬娜), Liu Xiaoran (刘晓然), Wang Xicheng (王喜
成), et al. Catalytic conversion of biomass-derived furfural into
重要的经济和社会价值。但选择性调控糠醛和 5-羟 pentanediols[J]. Chemical Industry and Engineering Progress (化工
甲基糠醛开环氢解反应具有较大的挑战性。1,5-戊二 进展), 2018, 37(3): 938-946.
[16] Shao Y, Xia Q N, Dong L, et al. Selective production of arenes via
醇的制备受限于糠醛分子呋喃环和四氢呋喃环的选 direct lignin upgrading over a niobium-based catalyst[J]. Nature
Communications, 2017, 8: 16104.
择性开环,而 5-羟甲基糠醛氢解开环脱氧制备 1,6- [17] Liu H, Huang Z, Zhao F, et al. Efficient hydrogenolysis of
biomass-derived furfuryl alcohol to 1,2- and 1,5-pentanediols over a
己二醇的研究还处于起步阶段。生物质基途径平台 non-precious Cu-Mg 3AlO 4.5 bifunctional catalyst[J]. Catalysis
分子 C—O 的选择性氢解及高效催化体系的研发是 Science & Technology, 2016, 6(3): 668-671.
[18] Koso S, Furikado I, Shimao A, et al. Chemoselective hydrogenolysis
有待努力的方向。针对这些问题,提出以下几点建 of tetrahydrofurfuryl alcohol to 1,5-pentanediol[J]. Chemical
Communications, 2009, 15(15): 2035-2037.
议:(1)从研究平台分子 C—O 氢解机理入手,为 [19] Feng S, Nagao A, Aihara T, et al. Selective hydrogenolysis of
高效催化剂的设计提供研发思路,开发酸性适中的 tetrahydrofurfuryl alcohol on Pt/WO 3 /ZrO 2 catalysts: Effect of WO 3
loading amount on activity[J]. Catalysis Today, 2017, 303: 207-212.
开环加氢双功能催化剂,避免深度加氢成单元醇和 [20] Wijaya H W. Hydrogenolysis of tetrahydrofurfuryl alcohol to
1,5-pentanediol over a Nickel-Yttrium oxide catalyst containing
烷烃;(2)有效利用贵金属,如提高贵金属的分散 ruthenium[J]. Chemistry Letters, 2018, 47(1): 103-106.
[21] Xu W, Wang H, Liu X, et al. Direct catalytic conversion of furfural to
度、合金化或使用过渡金属代替 Rh、Pt 等贵金属来 1,5-pentanediol by hydrogenolysis of the furan ring under mild
降低贵金属的用量;(3)通过催化剂的构效关系, conditions over Pt/Co 2AlO 4 catalyst[J]. Chemical Communications,
2011, 47(13): 3924-3926.
合理设计催化剂,使反应更加高效。 [22] Furikado I, Miyazawa T, Koso S, et al. Catalytic performance of
Rh/SiO 2 in glycerol reaction under hydrogen[J]. Green Chemistry,
2007, 9(6): 582-588.
参考文献: [23] Chen K, Mori K, Watanabe H, et al. C-O bond hydrogenolysis of
[1] Lu J, Wu L B, Li B G. High molecular weight polyesters derived cyclic ethers with OH groups over rhenium-modified supported
from biobased 1,5-pentanediol and a variety of aliphatic diacids: iridium catalysts[J]. Journal of Catalysis, 2012, 294: 171-183.
Synthesis, characterization, and thermo-mechanical properties[J]. [24] Koso S, Ueda N, Shinmi Y, et al. Promoting effect of Mo on the
ACS Sustainable Chemistry & Engineering, 2017, 5(7): 6159-6166. hydrogenolysis of tetrahydrofurfuryl alcohol to 1,5-pentanediol over
[2] Buchholz V, Agarwal S, Greiner A. Synthesis and enzymatic Rh/SiO 2[J]. Journal of Catalysis, 2009, 267(1): 89-92.
degradation of soft aliphatic polyesters[J]. Macromolecular [25] Nakagawa Y, Tamura M, Tomishige K. Catalytic reduction of
biomass-derived furanic compounds with hydrogen[J]. Acs Catalysis,
Bioscience, 2016, 16(2): 207-213. 2013, 3(12): 2655-2668.
[3] Zhou R, Niu Z, Jia L, et al. CH 3ONa-initiated two-step- [26] Liu S, Amada Y, Tamura M, et al. One-pot selective conversion of
transesterification of DMC (dimethyl carbonate) and alpha, omega- furfural into 1,5-pentanediol over a Pd-added Ir–ReO x/SiO 2
alkanediol for poly(alkylene carbonate)[J]. Inorganic Chemistry bifunctional catalyst[J]. Green Chemistry, 2014, 16(2): 617-626.
Communications, 2018, 90: 82-85. [27] Connor R, Adkins H. Hydrogenolysis of oxygenated organic
[4] Huang K, Won W, Barnett K J, et al. Improving economics of compounds [J]. Journal of American Chemical Society, 1932, 54(12):
lignocellulosic biofuels: An integrated strategy for coproducing 4678-4690.
1,5-pentanediol and ethanol[J]. Applied Energy, 2018, 213: 585-594. [28] Liu H, Huang Z, Kang H, et al. Selective hydrogenolysis of
[5] Mai J, Tan Y. Polyester polyol formulation used for polyurethane, biomass-derived furfuryl alcohol into 1,2- and 1,5-pentanediol over
comprises sebacic acid, oxalic acid, 1,2-propylene glycol, 1,6-glycol, highly dispersed Cu-Al 2O 3 catalysts[J]. Chinese Journal of Catalysis,
1,5-pentanediol and neopentyl glycol: CN106866947-A [P]. 2017- 2016, 37(5): 700-710.
06-20. [29] Hu L, Zhao G, Hao W, et al. Cheminform abstract: catalytic
[6] Oishi K, Omori K Cast. thermosetting polyurethane elastomer used conversion of biomass-derived carbohydrates into fuels and chemicals
for e. g. roller, comprises polycarbonate polyol(s) having structure via furanic aldehydes[J]. Rsc Advances, 2012, 2(30): 11184-11206.
derived from 1,5-pentanediol and/or 1,5-hexanediol, polyisocyanate, [30] Buntara T, Noel S, Phua P H, et al. Caprolactam from renewable
and polyrotaxane: JP2018058987-A [P]. 2018-04-12. resources: Catalytic conversion of 5-hydroxymethylfurfural into
[7] Gomez C M, Gutierrez D, Asensio M, et al. Transparent caprolactone[J]. Angewandte Chemie International Edition, 2011,
thermoplastic polyurethanes based on aliphatic diisocyanates and 50(31): 7083-7087.
polycarbonate diol[J]. Journal of Elastomers and Plastics, 2017, [31] He J, Burt S P, Ball M, et al. Synthesis of 1,6-hexanediol from
49(1): 77-95. cellulose derived tetrahydrofuran-dimethanol with Pt-WO x/TiO 2
[8] Kurakake M, Amai Y, Konishi M, et al. Characteristics of an Catalysts[J]. ACS Catalysis, 2018, 8(2): 1427-1439.
beta-N-acetylhexosaminidase from Bacillus sp CH11, including its [32] Chen K, Koso S, Prof T K, et al. Chemoselective hydrogenolysis of
transglycosylation activity[J]. Journal of Food Science, 2018, 83(5): tetrahydropyran-2-methanol to 1,6-hexanediol over rhenium-
1208-1214. modified carbon-supported Rhodium catalysts[J]. Chemcatchem,
[9] Faergemann J, Wahlstrand B, Hedner T, et al. Pentane-1,5-diol as a 2010, 2(5): 547-555.
percutaneous absorption enhancer[J]. Archives of Dermatological [33] Tuteja J, Choudhary H, Nishimura S, et al. Direct synthesis of
Research, 2005, 297(6): 261-265. 1,6-hexanediol from HMF over a heterogeneous Pd/ZrP catalyst
[10] Huber G W, Dumesic J A, Barnett K J, et al. Preparation of using formic acid as hydrogen source[J]. Chemsuschem, 2014, 7(1):
1,5-pentanediol used as e. g. plasticizer, involves dehydrating 96-100.
tetrahydrofurfural alcohol to dihydropyran (DHP), hydrating DHP to [34] Xiao B, Zheng M Y, Li X S, et al. Synthesis of 1,6-hexanediol from
2-hydroxy-tetrahydropyran and hydrogenating obtained compound: HMF over double-layered catalysts of Pd/SiO 2+Ir-ReO x/SiO 2 in a
US2017210688-A1; WO2017127263-A1[P]. 2017-07-27. fixed-bed reactor[J]. Green Chemistry, 2016, 18(7): 2175-2184.