Page 17 - 201905
P. 17

第 5 期                匡碧锋,等:  生物质催化转化制备 1,5-戊二醇和 1,6-己二醇研究进展                              ·785·


            物 1,6-己二醇,产率达到 57.8%        [34] 。固定床反应器催          [11]  Lu Hua (鲁华), Gao Wei (高伟).  Industry  status  and  application  of
                                                                   1,6-hexanediol[J].  Fine  and  Specialty  Chemicals  (精细与专用化学
            化剂分层装填的方式明显提高了 1,6-己二醇的产率。                             品), 2013, 21(7): 9-11.
                                                               [12]  Gu Guoyao (顾国耀),  Xu  Xiaoqing  (徐晓清),  Chen  Shiping  (陈仕
                                                                   萍),  et al.  Industrial  side-line  test  of  catalyst  for  dimethyl  adipate
            3    结论与展望                                             hydrogenation  to  1,6-hexanediol[J].  Industrial  Catalyst  (工业催化),
                                                                   2018, 26(6): 64-68.
                                                               [13]  Huang Jiyue (黄集钺), Bai Xiaolin (白晓琳), Cheng Guangjian (程
                 1,5-戊二醇和 1,6-己二醇是两种重要的化工中                         光剑),  et al.  Preparation  and  application  of  1,5-pentanediol[J].
                                                                   Chemical Intermediate (化工中间体), 2007, (2): 11-13, 26.
            间体,可以通过石油基和生物质基途径制取,但由                             [14]  Liang Changhai (梁长海),  Li  Chuang  (李闯),  Yin  Dongdong  (殷东
            于环境问题和石化资源的日益减少,以可再生的生                                 东 ),  et al.  Continuous  esterification  of  1,6-adipic  acid  to  1,6-
                                                                   hexanediol: CN106905111A[P]. 2017-06-30.
            物质资源通过生物炼制的方法制取高级二元醇具有                             [15]  Fan Dongna (樊冬娜), Liu Xiaoran (刘晓然), Wang Xicheng (王喜
                                                                   成),  et al.  Catalytic  conversion  of  biomass-derived  furfural  into
            重要的经济和社会价值。但选择性调控糠醛和 5-羟                               pentanediols[J]. Chemical Industry and Engineering Progress (化工
            甲基糠醛开环氢解反应具有较大的挑战性。1,5-戊二                              进展), 2018, 37(3): 938-946.
                                                               [16]  Shao Y, Xia Q N, Dong L, et al. Selective production of arenes via
            醇的制备受限于糠醛分子呋喃环和四氢呋喃环的选                                 direct  lignin  upgrading  over  a  niobium-based  catalyst[J].  Nature
                                                                   Communications, 2017, 8: 16104.
            择性开环,而 5-羟甲基糠醛氢解开环脱氧制备 1,6-                        [17]  Liu  H,  Huang  Z,  Zhao  F,  et al.  Efficient  hydrogenolysis  of
                                                                   biomass-derived furfuryl alcohol to 1,2- and 1,5-pentanediols over a
            己二醇的研究还处于起步阶段。生物质基途径平台                                 non-precious  Cu-Mg 3AlO 4.5  bifunctional  catalyst[J].  Catalysis
            分子 C—O 的选择性氢解及高效催化体系的研发是                               Science & Technology, 2016, 6(3): 668-671.
                                                               [18]  Koso S, Furikado I, Shimao A, et al. Chemoselective hydrogenolysis
            有待努力的方向。针对这些问题,提出以下几点建                                 of  tetrahydrofurfuryl  alcohol  to  1,5-pentanediol[J].  Chemical
                                                                   Communications, 2009, 15(15): 2035-2037.
            议:(1)从研究平台分子 C—O 氢解机理入手,为                          [19]  Feng  S,  Nagao  A,  Aihara  T,  et al.  Selective  hydrogenolysis  of
            高效催化剂的设计提供研发思路,开发酸性适中的                                 tetrahydrofurfuryl alcohol on Pt/WO 3 /ZrO 2 catalysts: Effect of WO 3
                                                                   loading amount on activity[J]. Catalysis Today, 2017, 303: 207-212.
            开环加氢双功能催化剂,避免深度加氢成单元醇和                             [20]  Wijaya  H  W.  Hydrogenolysis  of  tetrahydrofurfuryl  alcohol  to
                                                                   1,5-pentanediol  over  a  Nickel-Yttrium  oxide  catalyst  containing
            烷烃;(2)有效利用贵金属,如提高贵金属的分散                                ruthenium[J]. Chemistry Letters, 2018, 47(1): 103-106.
                                                               [21]  Xu W, Wang H, Liu X, et al. Direct catalytic conversion of furfural to
            度、合金化或使用过渡金属代替 Rh、Pt 等贵金属来                             1,5-pentanediol  by  hydrogenolysis  of  the  furan  ring  under  mild
            降低贵金属的用量;(3)通过催化剂的构效关系,                                conditions  over  Pt/Co 2AlO 4  catalyst[J].  Chemical  Communications,
                                                                   2011, 47(13): 3924-3926.
            合理设计催化剂,使反应更加高效。                                   [22]  Furikado  I,  Miyazawa  T,  Koso  S,  et al.  Catalytic  performance  of
                                                                   Rh/SiO 2  in  glycerol  reaction  under  hydrogen[J].  Green  Chemistry,
                                                                   2007, 9(6): 582-588.
            参考文献:                                              [23]  Chen  K,  Mori  K,  Watanabe  H,  et al.  C-O  bond  hydrogenolysis  of
            [1]   Lu J,  Wu L B,  Li  B G.  High  molecular  weight polyesters  derived   cyclic  ethers  with  OH  groups  over  rhenium-modified  supported
                 from  biobased  1,5-pentanediol  and  a  variety  of  aliphatic  diacids:   iridium catalysts[J]. Journal of Catalysis, 2012, 294: 171-183.
                 Synthesis,  characterization,  and  thermo-mechanical  properties[J].   [24]  Koso  S,  Ueda  N,  Shinmi  Y,  et al.  Promoting  effect  of  Mo  on  the
                 ACS Sustainable Chemistry & Engineering, 2017, 5(7): 6159-6166.    hydrogenolysis of tetrahydrofurfuryl alcohol to 1,5-pentanediol over
            [2]   Buchholz  V,  Agarwal  S,  Greiner  A.  Synthesis  and  enzymatic   Rh/SiO 2[J]. Journal of Catalysis, 2009, 267(1): 89-92.
                 degradation  of  soft  aliphatic  polyesters[J].  Macromolecular   [25]  Nakagawa  Y,  Tamura  M,  Tomishige  K.  Catalytic  reduction  of
                                                                   biomass-derived furanic compounds with hydrogen[J]. Acs Catalysis,
                 Bioscience, 2016, 16(2): 207-213.                 2013, 3(12): 2655-2668.
            [3]   Zhou  R,  Niu  Z,  Jia  L,  et al.  CH 3ONa-initiated  two-step-   [26]  Liu S, Amada Y, Tamura M, et al. One-pot selective conversion of
                 transesterification of DMC (dimethyl carbonate) and alpha, omega-   furfural  into  1,5-pentanediol  over  a  Pd-added  Ir–ReO x/SiO 2
                 alkanediol  for  poly(alkylene  carbonate)[J].  Inorganic  Chemistry   bifunctional catalyst[J]. Green Chemistry, 2014, 16(2): 617-626.
                 Communications, 2018, 90: 82-85.              [27]  Connor  R,  Adkins  H.  Hydrogenolysis  of  oxygenated  organic
            [4]   Huang  K,  Won  W,  Barnett  K  J,  et al.  Improving  economics  of   compounds [J]. Journal of American Chemical Society, 1932, 54(12):
                 lignocellulosic  biofuels:  An  integrated  strategy  for  coproducing   4678-4690.
                 1,5-pentanediol and ethanol[J]. Applied Energy, 2018, 213: 585-594.     [28]  Liu  H,  Huang  Z,  Kang  H,  et al.  Selective  hydrogenolysis  of
            [5]   Mai  J,  Tan  Y.  Polyester  polyol  formulation  used  for  polyurethane,   biomass-derived furfuryl alcohol into 1,2- and 1,5-pentanediol over
                 comprises sebacic acid, oxalic acid, 1,2-propylene glycol, 1,6-glycol,   highly dispersed Cu-Al 2O 3 catalysts[J]. Chinese Journal of Catalysis,
                 1,5-pentanediol  and  neopentyl  glycol:  CN106866947-A  [P].  2017-   2016, 37(5): 700-710.
                 06-20.                                        [29]  Hu  L,  Zhao  G,  Hao  W,  et al.  Cheminform  abstract:  catalytic
            [6]   Oishi K, Omori K Cast. thermosetting polyurethane elastomer used   conversion of biomass-derived carbohydrates into fuels and chemicals
                 for  e.  g.  roller,  comprises  polycarbonate  polyol(s)  having  structure   via furanic aldehydes[J]. Rsc Advances, 2012, 2(30): 11184-11206.
                 derived from 1,5-pentanediol and/or 1,5-hexanediol, polyisocyanate,   [30]  Buntara  T,  Noel  S,  Phua  P  H,  et al.  Caprolactam  from  renewable
                 and polyrotaxane: JP2018058987-A [P]. 2018-04-12.   resources:  Catalytic  conversion  of  5-hydroxymethylfurfural  into
            [7]   Gomez  C  M,  Gutierrez  D,  Asensio  M,  et al.  Transparent   caprolactone[J].  Angewandte  Chemie  International  Edition,  2011,
                 thermoplastic  polyurethanes  based  on  aliphatic  diisocyanates  and   50(31): 7083-7087.
                 polycarbonate  diol[J].  Journal  of  Elastomers  and  Plastics,  2017,   [31]  He  J,  Burt  S  P,  Ball  M,  et al.  Synthesis  of  1,6-hexanediol  from
                 49(1): 77-95.                                     cellulose  derived  tetrahydrofuran-dimethanol  with  Pt-WO x/TiO 2
            [8]   Kurakake  M,  Amai  Y,  Konishi  M,  et al.  Characteristics  of  an   Catalysts[J]. ACS Catalysis, 2018, 8(2): 1427-1439.
                 beta-N-acetylhexosaminidase  from  Bacillus  sp  CH11,  including  its   [32]  Chen K, Koso S, Prof T K, et al. Chemoselective hydrogenolysis of
                 transglycosylation activity[J]. Journal of Food Science, 2018, 83(5):   tetrahydropyran-2-methanol  to  1,6-hexanediol  over  rhenium-
                 1208-1214.                                        modified  carbon-supported  Rhodium  catalysts[J].  Chemcatchem,
            [9]   Faergemann J, Wahlstrand B, Hedner T, et al. Pentane-1,5-diol as a   2010, 2(5): 547-555.
                 percutaneous  absorption  enhancer[J].  Archives  of  Dermatological   [33]  Tuteja  J,  Choudhary  H,  Nishimura  S,  et al.  Direct  synthesis  of
                 Research, 2005, 297(6): 261-265.                  1,6-hexanediol  from  HMF  over  a  heterogeneous  Pd/ZrP  catalyst
            [10]  Huber  G  W,  Dumesic  J  A,  Barnett  K  J,  et al.  Preparation  of   using formic acid as hydrogen source[J]. Chemsuschem, 2014, 7(1):
                 1,5-pentanediol  used  as  e.  g.  plasticizer,  involves  dehydrating   96-100.
                 tetrahydrofurfural alcohol to dihydropyran (DHP), hydrating DHP to   [34]  Xiao B, Zheng M Y, Li X S, et al. Synthesis of 1,6-hexanediol from
                 2-hydroxy-tetrahydropyran  and  hydrogenating  obtained  compound:   HMF  over  double-layered  catalysts  of  Pd/SiO 2+Ir-ReO x/SiO 2 in  a
                 US2017210688-A1; WO2017127263-A1[P]. 2017-07-27.   fixed-bed reactor[J]. Green Chemistry, 2016, 18(7): 2175-2184.
   12   13   14   15   16   17   18   19   20   21   22