Page 221 - 201906
P. 221
4+
第 6 期 张永德,等: 果胶-PDA 微球的功能化制备及其对 Th 吸附性能 ·1227·
通过芳基-芳基共价键链接形成 PDA 膜粘附在果胶 298(1): 455-464.
-Ca 微球上 [40] ,其机理如图 17b 所示。根据 FTIR、XPS [5] Raju C S K, Subramanian M S. Sequential separation of lanthanides,
thorium and uranium using novel solid phase extraction method from
4+
可知,果胶-PDA 吸附 Th 的过程中,果胶-PDA 微 high acidic nuclear wastes[J]. Journal of Hazardous Materials, 2007,
4+
球上的 N、O 与 Th 发生了螯合作用 [41-42] 。 145(1/2): 315-322.
[6] Harrison J J, Zawadzki A, Chisari R, et al. Separation and
measurement of thorium, plutonium, americium, uranium and
3 结论 strontium in environmental matrices[J]. J Environ Radioact, 2011,
102(10): 896-900.
充分利用 PDA 的亲水性、易粘着性、多官能团 [7] Moody C A, Glover S E, Stuit D B, et al. Pre-concentration and
性和反应条件温和等优点,用 PDA 修饰果胶微球生 separation of thorium, uranium, plutonium and americium in human
soft tissues by extraction chromatography[J]. Journal of
成功能性的吸附剂果胶-PDA 微球,并用于去除溶液 Radioanalytical & Nuclear Chemistry, 1998, 234(1/2): 183-188.
4+
中的 Th 。通过对果胶-PDA 微球吸附性能的研究及 [8] Pozebon D, Martins C A, Scheffler G L. Straightforward determination
of U, Th, and Hf at trace levels using ultrasonic nebulization and
表征分析,得出如下结果: axial view ICP OES[J]. Analytical Methods, 2016, 8(3): 504-509.
4+
(1)果胶-PDA 微球在 pH=3.5、Th 初始质量 [9] Khazaei Y, Faghihian H, Kamali M. Removal of thorium from
浓度为 24 mg/L、吸附剂用量为 0.03 g 时,吸附量 aqueous solutions by sodium clinoptilolite[J]. Journal of
Radioanalytical & Nuclear Chemistry, 2011, 289(2): 529-536.
可达到 37.172 mg/g;随着接触时间的增大吸附量呈 [10] Yakout S M. Evaluation of mineral and organic acids on the selective
4+
现先增加后趋于平衡的趋势;随着 Th 质量浓度的 separation of radioactive elements (U and Th) using modified
carbon[J]. Desalination & Water Treatment, 2016, 57(7): 3292-3297.
升高吸附量逐渐增加。温度对吸附效果的影响较大。
[11] Zong Y, Zhang Y, Lin X, et al. Preparation of a novel microsphere
4+
(2)共存离子对果胶-PDA 微球去除 Th 的影 adsorbent of prussian blue capsulated in carboxymethyl cellulose
响较小,说明该吸附剂具有较好的吸附选择性;果 sodium for Cs(Ⅰ) removal from contaminated water[J]. Journal of
Radioanalytical & Nuclear Chemistry, 2017, 311(3): 1577-1591.
胶-PDA 微球吸附剂循环 4 次后,解吸率仍在 74% [12] Xu Jihong (徐继红), Xu Shaowei (许少薇), Li Huiling (李慧玲),
以上;失效后的果胶-PDA 微球吸附剂减容处理后, et al. Adsorption performanc of methylene blue dye by LS-g-PAA
AMPS/APT resin[J]. Fine Chemicals(精细化工), 2016, 33(5): 497-
烧失率为 92.51%。
503.
(3)对静态吸附实验数据进行动力学模型和等 [13] Wang Xinpeng (王新鹏), Guo Zhouyi (郭周义). Application of
温吸附模型拟合,结果表明,果胶-PDA 吸附 Th 4+ dopamine to sewage treatment and its forecast[J]. Industrial Water
Treatment (工业水处理), 2015, 35(2): 19-22.
的过程符合 Langmuir 线性等温吸附模型和准二级 [14] Liu Y L, Ai K L, Lu L H. Polydopamine and its derivative materials:
动力学模型,且最大吸附量为 99.010 mg/g;热力学 Synthesis and promising applications in energy, environmental, and
biomedical fields[J]. Chemical Reviews, 2014, 114(9): 5057-5115.
4+
数据表明,果胶-PDA 吸附 Th 是一个自发吸热的过 [15] Kupchik L A, Kupchik M P, Alekseev O L, et al. Effect of
程,升高温度有利于吸附进行。 electrosurface properties of pectin substances on their sorption
4+
(4)果胶-PDA 吸附 Th 主要是单分子层化学 capacity for water and heavy metals[J]. Russian Journal of Applied
Chemistry, 2007, 80(7): 1078-1081.
吸附,其吸附主要是果胶-PDA 微球上 N、O 与 Th 4+ [16] Zhu Jiuya (祝久亚). Studies on preparation and application basis of
发生螯合作用所致。 petin/Al 2O 3-ZrO 2 composite microsphere[D]. Mianyang:Southwest
University of Science and Technology (西南科技大学), 2013.
PDA 修饰果胶的复合吸附剂制备简便,性质稳 [17] Malkoc E,Nuhoglu Y.Removal of Ni (II) ions from aqueous
定,可循环使用,适宜减容处理,便于柱操作,是 solutions using waste of tea factory:Adsorption on a fixed-bed
column[J]. Journal of Hazardous Materials, 2006, 135(1): 328-336
4+
一种高效的 Th 吸附材料,为分离提取放射性废水
[18] Rana D, Matsuura T, Kassim M A, et al. Radioactive decontamination of
4+
中 Th 的工业化处理提供了一种新的方式。 water by membrane processes—A review[J]. Desalination, 2013,
321(15): 77-92.
参考文献: [19] Wang J, Lin X, Luo X, et al. A sorbent of carboxymethyl cellulose
loaded with zirconium for the removal of fluoride from aqueous
[1] Adeek S A, El-Sayed M A, Amine M M, et al. A chelating resin solution[J]. Chemical Engineering Journal, 2014, 252(18): 415-422.
containing trihydroxybenzoic acid as the functional group: Synthesis [20] Zhou Q, Lin X, Li B, et al. Fluoride adsorption from aqueous
and adsorption behavior for Th(Ⅳ) and U(Ⅵ) ions[J]. Journal of solution by aluminum alginate particles prepared via electrostatic
Radioanalytical & Nuclear Chemistry, 2014, 299(3): 1299-1306. spinning device[J]. Chemical Engineering Journal, 2014, 256(8):
[2] Chen Runyang (陈润羊), Hua Ming (花明). Research on influence of 306-315.
uranium resource on national nuclear power development strategy [21] Zhou L, Jin J, Liu Z, et al. Adsorption of acid dyes from aqueous
[J]. Mining & Processing Equipment(矿山机械), 2015, 43(11): 7-11. solutions by the ethylenediamine-modified magnetic chitosan
[3] Kaynar Ü H, Şabikoğlu I, Kaynar S Ç, et al. Modeling of thorium nanoparticles[J]. Journal of Hazardous Materials, 2011, 185(2):
(Ⅳ) ions adsorption onto a novel adsorbent material silicon dioxide 1045-1052.
nano-balls using response surface methodology[J]. Applied Radiation [22] Feng S, Li X, Ma F, et al. Prussian blue functionalized microcapsules
& Isotopes, 2016, 115: 280-288. for effective removal of cesium in a water environment[J]. RSC
[4] Sheng G, Hu B. Role of solution chemistry on the trapping of Advances, 2016, 6(41): 34399-34410.
radionuclide Th( Ⅳ ) using titanate nanotubes as an efficient
adsorbent[J]. Journal of Radioanalytical & Nuclear Chemistry, 2013, (下转第 1248 页)