Page 34 - 精细化工2019年第9期
P. 34

·1762·                            精细化工   FINE CHEMICALS                                  第 36 卷

            [13]  Hornig  S,  Biskup  C,  Gräfe  A,  et al.  Biocompatible  fluorescent   20168-20171.
                 nanoparticles for pH-sensoring[J]. Soft Matter, 2008, 4(6): 1169-1172.   [23]  Yuan  Y,  Liu  Z.  An  effective  approach  to  enhanced  energy-transfer
            [14]  Chan Y, Wu C, Ye F, et al. Development of ultrabright semiconducting   efficiency  from  up-converting  phosphors  and  increased  assay
                 polymer  dots  for  ratiometric  pH  sensing[J].  Analytical  Chemistry,   sensitivity[J]. Chemical Communications, 2012, 48(60): 7510-7512.
                 2011, 83(4): 1448-1455.                       [24]  Wang Y, Shen P, Li C, et al. Upconversion fluorescence resonance
            [15]  Korzeniowska  B,  Woolley  R,  Decourcey  J,  et al.  Intracellular   energy transfer based biosensor for ultrasensitive detection of matrix
                 pH-sensing  using  core/shell  silica  nanoparticles[J].  Journal  of   metalloproteinase-2 in blood[J]. Analytical Chemistry, 2012, 84(3):
                 Biomedical Nanotechnology, 2014, 10(7): 1336-1345.   1466-1473.
            [16]  Wu Wanhua (伍晚花), Guo Song (郭颂), Zhao Jianzhang (赵建章).   [25]  Chen H C, Hung C Y, Wang K H, et al. White-light emission from an
                 The  development  of  triplet-triplet  annihilation  upconversion[J].   upconverted emission with an organic triplet sensitizer[J]. Chemical
                 Scientia Sinica Chimica (中国科学:  化学), 2012, 42(10): 1381-1398.   Communications, 2009, 27(27): 4064-4066.
            [17]  Ye C, Zhou L, Wang X, et al. Photon upconversion: From two-photon   [26]  Baluschev S, Miteva T, Yakutkin V, et al. Up-conversion fluorescence:
                 absorption  (TPA)  to  triplet-triplet  annihilation  (TTA)[J].  Physical   Noncoherent  excitation  by  sunlight[J].  Physical  Review  Letters,
                 Chemistry Chemical Physics, 2016, 18(16): 10818-10835.   2006, 97(14): 143903.
            [18]  Chen H, Ren J. Sensitive determination of chromium (Ⅵ) based on   [27]  Sun B, Ye C, Liang Z, et al. Low-power upconversion in anthracene
                 the  inner  filter  effect  of  upconversion  luminescent  nanoparticles   derivatives doped with Pd(Ⅱ) tetraphenylporphyrin[J]. Asian Journal
                       3+
                           3+
                 (NaYF 4:Yb , Er )[J]. Talanta, 2012, 99: 404-408.   of Chemistry, 2014, 26(5): 1413-1416.
            [19]  Liu Q, Peng J, Sun L, et al. High-efficiency upconversion luminescent   [28]  Singh-Rachford T N, Castellano F N. Photon upconversion based on
                 sensing  and  bioimaging  of  Hg(Ⅱ)  by  chromophoric  ruthenium   sensitized  triplet-triplet  annihilation[J].  Coordination  Chemistry
                 complex-assembled nanophosphors[J]. ACS Nano, 2011, 5(10): 8040- 8048.   Reviews, 2010, 254(21/22): 2560-2573.
            [20]  Liu J, Liu Y, Liu Q, et al. Iridium(Ⅲ) complex-coated nanosystem   [29]  Li H, Wei R, Yan G, et al. Smart self-assembled nanosystem based on
                 for  ratiometric  upconversion  luminescence  bioimaging  of  cyanide   water-soluble  pillararene  and  rare-earth-doped  upconversion
                 anions[J]. Journal of the American Chemical Society, 2011, 133(39):   nanoparticles  for  pH-responsive  drug  delivery[J].  ACS  Applied
                 15276-15279.                                      Materials & Interfaces, 2018, 10(5): 4910-4920.
            [21]  Chen  J,  Chen  H,  Zhou  C,  et al.  An  efficient  upconversion   [30]  Wang S, Zhang L, Dong C, et al. Smart pH-responsive upconversion
                 luminescence  energy  transfer  system  for  determination  of  trace   nanoparticles  for  enhanced  tumor  cellular  internalization  and
                                        3+
                                            3+
                 amounts of nitrite based on NaYF 4: Yb , Er  as donor[J]. Analytica   near-infrared  light-triggered  photodynamic  therapy[J].  Chemical
                 Chimica Acta, 2012, 713: 111-114.                 Communications, 2015, 51: 406-408.
            [22]  Deng R, Xie X, Vendrell M, et al. Intracellular glutathione detection   [31]  Hao R, Ye C, Wang X, et al. pH-responsive low-power upconversion
                 using  MnO 2-nanosheet-modified  upconversion  nanoparticles[J].   based  on  sandwichlike  palladium  phthalocyanine  and  rhodamine
                 Journal  of  the  American  Chemical  Society,  2011,  133(50):   B[J]. Journal of Physical Chemistry C, 2017, 121(25): 13524-13531.

            (上接第 1756 页)                                           experimental results[J]. Langmuir, 2018, 34(42): 12600-12608.
                                                               [98]  Meng  S,  Zhang  J,  Ma  Y,  et al.  Multi-scale  simulation  studies  on
            [90]  Levine  Z  A,  Venable  R  M,  Watson  M  C,  et al.  Determination  of   interaction between anionic surfactants and cations[J]. AIP Advances,
                 biomembrane  bending  moduli  in  fully  atomistic  simulations[J].   2014, 4(12): 127110.
                 Journal  of  the  American  Chemical  Society,  2014,  136(39):  13582-   [99]  Meng  S,  Zhang  J,  Wang  Y,  et al.  Simulating  the  rheology  of
                 13585.                                            surfactant solution using dissipative particle dynamics[J]. Molecular
            [91]  Den Otter W K, Shkulipa S A, Briels W J. Buckling and persistence   Simulation, 2014, 41(9): 772-778.
                 length of an amphiphilic worm from molecular dynamics simulations   [100]  Lin  J,  Zhang  H,  Chen  Z, et al.  Penetration of  lipid  membranes  by
                 [J]. Journal of Chemical Physics, 2003, 119(4): 2363-2368.     gold  nanoparticles:  insights  into  cellular  uptake,  cytotoxicity,  and
            [92]  Asgari M. A molecular model for the free energy, bending elasticity,   their relationship[J]. ACS Nano, 2010, 4(9): 5421-5429.
                 and  persistence  length  of  wormlike  micelles[J].  European  Physical   [101]  Shkulipa  S  A,  Den  Otter  W  K,  Briels  W  J.  Surface  viscosity,
                 Journal E, 2015, 38(9): 1-16.                     diffusion, and intermonolayer friction: simulating sheared amphiphilic
            [93]  Padding  J  T,  Boek  E  S,  Briels  W  J.  Dynamics  and  rheology  of   bilayers[J]. Biophysical Journal, 2005, 89(2): 823-829.
                 wormlike  micelles  emerging  from  particulate  computer  simulations   [102]  Dhakal S, Sureshkumar R. Uniaxial extension of surfactant micelles:
                 [J]. Journal of Chemical Physics, 2008, 129(7): 074903.     counterion mediated chain stiffening and a mechanism of rupture by
            [94]  Padding J T, Briels W J, Stukan M R, et al. Review of multi-scale   flow-induced  energy  redistribution[J].  ACS  Macro  Letters,  2016,
                 particulate simulation of the rheology of wormlike micellar fluids[J].   5(1): 108-111.
                 Soft Matter, 2009, 5(22): 4367-4375.          [103]  Sambasivam A,  Sangwai A V,  Sureshkumar  R. Dynamics  and
            [95]  Castrejón-González E O, Márquez Baños V E, Javier Alvarado J F, et   scission  of  rodlike  cationic  surfactant  micelles  in  shear  flow[J].
                 al.  Rheological  model  for  micelles  in  solution  from  molecular   Physical Review Letters, 2015, 114(15): 158302.
                 dynamics[J]. Journal of Molecular Liquids, 2014, 198(10): 84-93.     [104]  Kawamoto S,  Shinoda  W. Free  energy analysis  along the stalk
            [96]  Wang  H,  Tang  X,  Eike  D  M,  et al.  Scission  free  energies  for   mechanism of membrane fusion[J]. Soft Matter, 2014, 10(17): 3048-
                 wormlike surfactant micelles: Development of a simulation protocol,   3054.
                 application,  and  validation  for  personal  care  formulations[J].   [105]  Dilabio  G  A,  Hurley  M  M,  Christiansen  P  A.  Simple  one-electron
                 Langmuir, 2018, 34(4): 1564-1573.                 quantum  capping  potentials  for  use  in  hybrid  QM/MM  studies  of
            [97]  Mandal T, Larson R G. Stretch and breakage of wormlike  micelles   biological molecules[J]. Journal of Chemical Physics, 2002, 116(22):
                 under  uniaxial  strain:  a  simulation  study  and  comparison  with   9578-9584.
   29   30   31   32   33   34   35   36   37   38   39