Page 34 - 精细化工2019年第9期
P. 34
·1762· 精细化工 FINE CHEMICALS 第 36 卷
[13] Hornig S, Biskup C, Gräfe A, et al. Biocompatible fluorescent 20168-20171.
nanoparticles for pH-sensoring[J]. Soft Matter, 2008, 4(6): 1169-1172. [23] Yuan Y, Liu Z. An effective approach to enhanced energy-transfer
[14] Chan Y, Wu C, Ye F, et al. Development of ultrabright semiconducting efficiency from up-converting phosphors and increased assay
polymer dots for ratiometric pH sensing[J]. Analytical Chemistry, sensitivity[J]. Chemical Communications, 2012, 48(60): 7510-7512.
2011, 83(4): 1448-1455. [24] Wang Y, Shen P, Li C, et al. Upconversion fluorescence resonance
[15] Korzeniowska B, Woolley R, Decourcey J, et al. Intracellular energy transfer based biosensor for ultrasensitive detection of matrix
pH-sensing using core/shell silica nanoparticles[J]. Journal of metalloproteinase-2 in blood[J]. Analytical Chemistry, 2012, 84(3):
Biomedical Nanotechnology, 2014, 10(7): 1336-1345. 1466-1473.
[16] Wu Wanhua (伍晚花), Guo Song (郭颂), Zhao Jianzhang (赵建章). [25] Chen H C, Hung C Y, Wang K H, et al. White-light emission from an
The development of triplet-triplet annihilation upconversion[J]. upconverted emission with an organic triplet sensitizer[J]. Chemical
Scientia Sinica Chimica (中国科学: 化学), 2012, 42(10): 1381-1398. Communications, 2009, 27(27): 4064-4066.
[17] Ye C, Zhou L, Wang X, et al. Photon upconversion: From two-photon [26] Baluschev S, Miteva T, Yakutkin V, et al. Up-conversion fluorescence:
absorption (TPA) to triplet-triplet annihilation (TTA)[J]. Physical Noncoherent excitation by sunlight[J]. Physical Review Letters,
Chemistry Chemical Physics, 2016, 18(16): 10818-10835. 2006, 97(14): 143903.
[18] Chen H, Ren J. Sensitive determination of chromium (Ⅵ) based on [27] Sun B, Ye C, Liang Z, et al. Low-power upconversion in anthracene
the inner filter effect of upconversion luminescent nanoparticles derivatives doped with Pd(Ⅱ) tetraphenylporphyrin[J]. Asian Journal
3+
3+
(NaYF 4:Yb , Er )[J]. Talanta, 2012, 99: 404-408. of Chemistry, 2014, 26(5): 1413-1416.
[19] Liu Q, Peng J, Sun L, et al. High-efficiency upconversion luminescent [28] Singh-Rachford T N, Castellano F N. Photon upconversion based on
sensing and bioimaging of Hg(Ⅱ) by chromophoric ruthenium sensitized triplet-triplet annihilation[J]. Coordination Chemistry
complex-assembled nanophosphors[J]. ACS Nano, 2011, 5(10): 8040- 8048. Reviews, 2010, 254(21/22): 2560-2573.
[20] Liu J, Liu Y, Liu Q, et al. Iridium(Ⅲ) complex-coated nanosystem [29] Li H, Wei R, Yan G, et al. Smart self-assembled nanosystem based on
for ratiometric upconversion luminescence bioimaging of cyanide water-soluble pillararene and rare-earth-doped upconversion
anions[J]. Journal of the American Chemical Society, 2011, 133(39): nanoparticles for pH-responsive drug delivery[J]. ACS Applied
15276-15279. Materials & Interfaces, 2018, 10(5): 4910-4920.
[21] Chen J, Chen H, Zhou C, et al. An efficient upconversion [30] Wang S, Zhang L, Dong C, et al. Smart pH-responsive upconversion
luminescence energy transfer system for determination of trace nanoparticles for enhanced tumor cellular internalization and
3+
3+
amounts of nitrite based on NaYF 4: Yb , Er as donor[J]. Analytica near-infrared light-triggered photodynamic therapy[J]. Chemical
Chimica Acta, 2012, 713: 111-114. Communications, 2015, 51: 406-408.
[22] Deng R, Xie X, Vendrell M, et al. Intracellular glutathione detection [31] Hao R, Ye C, Wang X, et al. pH-responsive low-power upconversion
using MnO 2-nanosheet-modified upconversion nanoparticles[J]. based on sandwichlike palladium phthalocyanine and rhodamine
Journal of the American Chemical Society, 2011, 133(50): B[J]. Journal of Physical Chemistry C, 2017, 121(25): 13524-13531.
(上接第 1756 页) experimental results[J]. Langmuir, 2018, 34(42): 12600-12608.
[98] Meng S, Zhang J, Ma Y, et al. Multi-scale simulation studies on
[90] Levine Z A, Venable R M, Watson M C, et al. Determination of interaction between anionic surfactants and cations[J]. AIP Advances,
biomembrane bending moduli in fully atomistic simulations[J]. 2014, 4(12): 127110.
Journal of the American Chemical Society, 2014, 136(39): 13582- [99] Meng S, Zhang J, Wang Y, et al. Simulating the rheology of
13585. surfactant solution using dissipative particle dynamics[J]. Molecular
[91] Den Otter W K, Shkulipa S A, Briels W J. Buckling and persistence Simulation, 2014, 41(9): 772-778.
length of an amphiphilic worm from molecular dynamics simulations [100] Lin J, Zhang H, Chen Z, et al. Penetration of lipid membranes by
[J]. Journal of Chemical Physics, 2003, 119(4): 2363-2368. gold nanoparticles: insights into cellular uptake, cytotoxicity, and
[92] Asgari M. A molecular model for the free energy, bending elasticity, their relationship[J]. ACS Nano, 2010, 4(9): 5421-5429.
and persistence length of wormlike micelles[J]. European Physical [101] Shkulipa S A, Den Otter W K, Briels W J. Surface viscosity,
Journal E, 2015, 38(9): 1-16. diffusion, and intermonolayer friction: simulating sheared amphiphilic
[93] Padding J T, Boek E S, Briels W J. Dynamics and rheology of bilayers[J]. Biophysical Journal, 2005, 89(2): 823-829.
wormlike micelles emerging from particulate computer simulations [102] Dhakal S, Sureshkumar R. Uniaxial extension of surfactant micelles:
[J]. Journal of Chemical Physics, 2008, 129(7): 074903. counterion mediated chain stiffening and a mechanism of rupture by
[94] Padding J T, Briels W J, Stukan M R, et al. Review of multi-scale flow-induced energy redistribution[J]. ACS Macro Letters, 2016,
particulate simulation of the rheology of wormlike micellar fluids[J]. 5(1): 108-111.
Soft Matter, 2009, 5(22): 4367-4375. [103] Sambasivam A, Sangwai A V, Sureshkumar R. Dynamics and
[95] Castrejón-González E O, Márquez Baños V E, Javier Alvarado J F, et scission of rodlike cationic surfactant micelles in shear flow[J].
al. Rheological model for micelles in solution from molecular Physical Review Letters, 2015, 114(15): 158302.
dynamics[J]. Journal of Molecular Liquids, 2014, 198(10): 84-93. [104] Kawamoto S, Shinoda W. Free energy analysis along the stalk
[96] Wang H, Tang X, Eike D M, et al. Scission free energies for mechanism of membrane fusion[J]. Soft Matter, 2014, 10(17): 3048-
wormlike surfactant micelles: Development of a simulation protocol, 3054.
application, and validation for personal care formulations[J]. [105] Dilabio G A, Hurley M M, Christiansen P A. Simple one-electron
Langmuir, 2018, 34(4): 1564-1573. quantum capping potentials for use in hybrid QM/MM studies of
[97] Mandal T, Larson R G. Stretch and breakage of wormlike micelles biological molecules[J]. Journal of Chemical Physics, 2002, 116(22):
under uniaxial strain: a simulation study and comparison with 9578-9584.