Page 38 - 精细化工2019年第9期
P. 38

·1766·                            精细化工   FINE CHEMICALS                                  第 36 卷

                   表 1    气凝胶的比表面积和平均孔径分布                      模板剂,氯化锌作为前驱物,制备出掺锌壳聚糖气
            Table 1    Specific surface area and pore size distribution of   凝胶。通过对气凝胶的微观结构进行测试分析,发
                    the aerogels
                                                               现壳聚糖与 ZnCl 2 的质量比不同对气凝胶的多孔结
                                          2
             m(壳聚糖)∶m(氯化锌)  比表面积/(m /g)  平均孔径分布/nm
                                                               构有较大影响:当 m(壳聚糖)∶m(氯化锌)=0.5∶
                    0.5∶1             270         3~24
                                                               1 时,虽然骨架也有多孔结构,但骨架比较粗大,孔
                     1∶1              460         3~10
                                                                                    2
                                                               隙率下降,比表面积270 m /g,平均孔径分布在3~24 nm;

                 如表 1 所示,  不同样品的比表面积分别为 270                    当 m(壳聚糖)∶m(氯化锌)=1∶1 时,骨架纤细,
                     2
            和 460  m /g。这也说明在制备气凝胶时,壳聚糖与                       多孔结构明显,孔洞分布比较均匀,孔隙率较高,
                                                                             2
            氯化锌的不同比例对气凝胶的比表面积影响很大。                             比表面积 460  m /g,平均孔径分布在 3~10  nm。下
            当 m(壳聚糖)∶m(氯化锌)=0.5∶1 时,气凝胶                        一步工作是在制备出成型好、孔隙率高的掺锌壳聚
            样品的纳米颗粒团聚,形成的骨架结构粗大,孔隙                             糖气凝胶基础上,将该气凝胶材料用于吸附、催化
            率下降,比表面积较小;m(壳聚糖)∶m(氯化锌)=                          性能的研究。
            1∶1 时,气凝胶样品的骨架纤细,孔洞分布比较均匀,
            孔隙率高,其比表面积较大。气凝胶的孔径分布曲                             参考文献:
            线如图 6 所示。                                          [1]   Pekala  R  W,  Alviso  C  T.  Aeorgels  derived  from  multifunctional
                                                                   organic monomers[J]. Jounal of Non-Crystalline Solids, 1992, 145:
                                                                   90-98.
                                                               [2]   Kabbour H, Baumann T F, Satcher J H, et al. Toward new candidates
                                                                   for hydrogen storage:  High-surface-area carbon aerogels[J]. Chemistry of
                                                                   Materials, 2006, 18(26): 6085-6087.
                                                               [3]   Pierre  A  C,  Pajonk  G  M.  Chemistry  of  aerogels  and  their
                                                                   applications[J]. Chemical Reviews, 2002, 102(11): 4243-4266.
                                                               [4]   Chang Xinhong (常新红). Preparation, structure and characterization
                                                                   of  natural  polymers  based  organic  and  carbon  aeorgels  [D].Jinan:
                                                                   Shandong University (山东大学), 2009.
                                                               [5]   Bi Yutie (毕于铁), Ren Hongbo (任洪波), Chen Bowei (陈擘威), et
                                                                   al. Synthesis and characterization of nickel-based aerogels[J]. Journal
                                                                   of Functional Materials (功能材料), 2012, 43(11): 1361-1363.
                                                               [6]   Bi  Y,  Ren  H,  Chen  B,  et al.  Synthesis  monolithic  copper-based
                                                                   aerogel  with  polyacrylic  acid  as  template[J].  Journal  of  Sol-Gel
                                                                   Science and Technology, 2012, 63(1): 140-145.
                                                               [7]   Bi Yutie (毕于铁), Ren Hongbo (任洪波), Yang Jing (杨静), et al.
                                                                   Synthesis  and  characterization  of  copper-based  aerogels[J].  High
                                                                   Power  Laser  and  Particle  Beams  (强激光与粒子束), 2011, 23(10):
                                                                   2650-2652.
                                                               [8]   Du A,  Zhou B, Shen J, et al. Monolithic copper oxide aerogel via
                                                                   dispersed  inorganic  sol-gel  method[J].  Journal  of  Non-Crystalline
                                                                   Solids, 2009, 355(3): 175-181.
                                                               [9]   Ren H, Zhang L, Shang C, et al. Synthesis of a low-density tantalum
                                                                   oxide tile-like aerogel monolithic[J]. Journal of Sol-Gel Science and
                                                                   Technology, 2010, 53(2): 307-311.

                                                               [10]  Chen  Bowei  (陈擘威),  Bi  Yutie  (毕于铁),  Zhang  Lin  (张林).
                  壳聚糖与 ZnCl 2 的质量比:a—0.5∶1;b—1∶1
                                                                   Synthesis  and  characterization  of  cobalt-based  aerogel[J].  Fine
                       图 6    气凝胶的孔径分布曲线                           Chemicals (精细化工), 2013, 30(9): 985-988.
             Fig. 6    NLDFT analysis of pore size distribution of the aerogels   [11]  Krumm  M,  Pueyo  C  L,  Polarz  S.  Monolithic  zinc  oxide  aerogels
                                                                   from  organometallic  sol−gel  precursors[J].  Chemistry  of  Materials,
                 如图 6 所示,孔径分布曲线是两种气凝胶的样                            2010, 22(18): 5129-5136.
            品通过 NLDFT     [23-24] 分析方法得到的。两个样品的平               [12]  Chen Bowei (陈擘威), Huang Huakang (黄华康),Bi Yutie (毕于铁),
                                                                   et al. Synthesis and characterization of zinc-based composite aerogel
            均孔径分布在 3~24 nm 和 3~10 nm,都属于介孔材料。                      using citric acid as template [J]. Fine Chemicals (精细化工), 2015,
            如表 1 所示,两种气凝胶样品具有明显的多孔结构,孔                             32(5): 487-490.
                                                               [13]  Chen  B,  Wang  X,  Zhang  S,  et al.  Monolithic  ZnO  aerogel
            洞结构较明显,平均孔径分布于介孔范围内,两种
                                                                   synthesized through dispersed inorganic sol–gel method using citric
            气凝胶样品的比表面积差异明显,m(壳聚糖)∶m                                acid  as  template[J].  Journal  of  Porous  Materials,  2014,  21:  1035-
            (氯化锌)=1∶1 制备气凝胶样品的比表面积较大。                              1039.
                                                               [14]  Chen B, Chen G, Zeng T, et al. Monolithic zinc oxide aerogel with
                                                                   the  building  block  of  nanoscale  crystalline  particle[J].  Journal  of
            3    结论                                                Porous Materials, 2013, 20(5): 1051-1057.

                 采用改进的无机分散溶胶-凝胶法,壳聚糖作为                                                       (下转第 1815 页)
   33   34   35   36   37   38   39   40   41   42   43