Page 38 - 精细化工2019年第9期
P. 38
·1766· 精细化工 FINE CHEMICALS 第 36 卷
表 1 气凝胶的比表面积和平均孔径分布 模板剂,氯化锌作为前驱物,制备出掺锌壳聚糖气
Table 1 Specific surface area and pore size distribution of 凝胶。通过对气凝胶的微观结构进行测试分析,发
the aerogels
现壳聚糖与 ZnCl 2 的质量比不同对气凝胶的多孔结
2
m(壳聚糖)∶m(氯化锌) 比表面积/(m /g) 平均孔径分布/nm
构有较大影响:当 m(壳聚糖)∶m(氯化锌)=0.5∶
0.5∶1 270 3~24
1 时,虽然骨架也有多孔结构,但骨架比较粗大,孔
1∶1 460 3~10
2
隙率下降,比表面积270 m /g,平均孔径分布在3~24 nm;
如表 1 所示, 不同样品的比表面积分别为 270 当 m(壳聚糖)∶m(氯化锌)=1∶1 时,骨架纤细,
2
和 460 m /g。这也说明在制备气凝胶时,壳聚糖与 多孔结构明显,孔洞分布比较均匀,孔隙率较高,
2
氯化锌的不同比例对气凝胶的比表面积影响很大。 比表面积 460 m /g,平均孔径分布在 3~10 nm。下
当 m(壳聚糖)∶m(氯化锌)=0.5∶1 时,气凝胶 一步工作是在制备出成型好、孔隙率高的掺锌壳聚
样品的纳米颗粒团聚,形成的骨架结构粗大,孔隙 糖气凝胶基础上,将该气凝胶材料用于吸附、催化
率下降,比表面积较小;m(壳聚糖)∶m(氯化锌)= 性能的研究。
1∶1 时,气凝胶样品的骨架纤细,孔洞分布比较均匀,
孔隙率高,其比表面积较大。气凝胶的孔径分布曲 参考文献:
线如图 6 所示。 [1] Pekala R W, Alviso C T. Aeorgels derived from multifunctional
organic monomers[J]. Jounal of Non-Crystalline Solids, 1992, 145:
90-98.
[2] Kabbour H, Baumann T F, Satcher J H, et al. Toward new candidates
for hydrogen storage: High-surface-area carbon aerogels[J]. Chemistry of
Materials, 2006, 18(26): 6085-6087.
[3] Pierre A C, Pajonk G M. Chemistry of aerogels and their
applications[J]. Chemical Reviews, 2002, 102(11): 4243-4266.
[4] Chang Xinhong (常新红). Preparation, structure and characterization
of natural polymers based organic and carbon aeorgels [D].Jinan:
Shandong University (山东大学), 2009.
[5] Bi Yutie (毕于铁), Ren Hongbo (任洪波), Chen Bowei (陈擘威), et
al. Synthesis and characterization of nickel-based aerogels[J]. Journal
of Functional Materials (功能材料), 2012, 43(11): 1361-1363.
[6] Bi Y, Ren H, Chen B, et al. Synthesis monolithic copper-based
aerogel with polyacrylic acid as template[J]. Journal of Sol-Gel
Science and Technology, 2012, 63(1): 140-145.
[7] Bi Yutie (毕于铁), Ren Hongbo (任洪波), Yang Jing (杨静), et al.
Synthesis and characterization of copper-based aerogels[J]. High
Power Laser and Particle Beams (强激光与粒子束), 2011, 23(10):
2650-2652.
[8] Du A, Zhou B, Shen J, et al. Monolithic copper oxide aerogel via
dispersed inorganic sol-gel method[J]. Journal of Non-Crystalline
Solids, 2009, 355(3): 175-181.
[9] Ren H, Zhang L, Shang C, et al. Synthesis of a low-density tantalum
oxide tile-like aerogel monolithic[J]. Journal of Sol-Gel Science and
Technology, 2010, 53(2): 307-311.
[10] Chen Bowei (陈擘威), Bi Yutie (毕于铁), Zhang Lin (张林).
壳聚糖与 ZnCl 2 的质量比:a—0.5∶1;b—1∶1
Synthesis and characterization of cobalt-based aerogel[J]. Fine
图 6 气凝胶的孔径分布曲线 Chemicals (精细化工), 2013, 30(9): 985-988.
Fig. 6 NLDFT analysis of pore size distribution of the aerogels [11] Krumm M, Pueyo C L, Polarz S. Monolithic zinc oxide aerogels
from organometallic sol−gel precursors[J]. Chemistry of Materials,
如图 6 所示,孔径分布曲线是两种气凝胶的样 2010, 22(18): 5129-5136.
品通过 NLDFT [23-24] 分析方法得到的。两个样品的平 [12] Chen Bowei (陈擘威), Huang Huakang (黄华康),Bi Yutie (毕于铁),
et al. Synthesis and characterization of zinc-based composite aerogel
均孔径分布在 3~24 nm 和 3~10 nm,都属于介孔材料。 using citric acid as template [J]. Fine Chemicals (精细化工), 2015,
如表 1 所示,两种气凝胶样品具有明显的多孔结构,孔 32(5): 487-490.
[13] Chen B, Wang X, Zhang S, et al. Monolithic ZnO aerogel
洞结构较明显,平均孔径分布于介孔范围内,两种
synthesized through dispersed inorganic sol–gel method using citric
气凝胶样品的比表面积差异明显,m(壳聚糖)∶m acid as template[J]. Journal of Porous Materials, 2014, 21: 1035-
(氯化锌)=1∶1 制备气凝胶样品的比表面积较大。 1039.
[14] Chen B, Chen G, Zeng T, et al. Monolithic zinc oxide aerogel with
the building block of nanoscale crystalline particle[J]. Journal of
3 结论 Porous Materials, 2013, 20(5): 1051-1057.
采用改进的无机分散溶胶-凝胶法,壳聚糖作为 (下转第 1815 页)