Page 46 - 《精细化工》2020年第1期
P. 46
·32· 精细化工 FINE CHEMICALS 第 37 卷
量子产率和荧光寿命均有所下降。 [6] Yuan F, Wang Z, Li X, et al. Bright multicolor bandgap fluorescent
carbon quantum dots for electroluminescent light-emitting diodes[J].
由表 4 可知,复合胶膜的量子产率和荧光寿命均 Advanced Materials, 2017, 29(3): 1604436-1604449.
先增加后降低,当 CDs 加入量为 0.50%时制得的胶膜 [7] Yan Fanyong (颜范勇), Zou Yu (邹宇), Wang Meng (王猛), et al.
Synthesis and application of the fluorescent carbon dots[J]. Progress
WPU-2 最佳,量子产率可达 4.15%,荧光寿命可逆 2.43 in Chemistry (化学进展), 2014, 26(1): 61-74.
ns,复合胶膜的量子产率和荧光寿命的降低,可能是 [8] Bhunia S K, Saha A, Maity A R, et al. Carbon nanoparticle-based
fluorescent bioimaging probes[J]. Scientific Reports, 2013, 3: 1473.
由于部分 CDs 聚集诱导荧光淬灭或聚合物基质的干 [9] Islam M S, Deng Y, Tong L, et al. In-situ direct grafting of graphene
扰,因为膜中分子间相互作用的三维网络会影响 CDs quantum dots onto carbon fibre by low temperature chemical
表面基团的状态,增加了非辐射跃迁的倾向 [24-25] 。 synthesis for high performance flexible fabric supercapacitor[J].
Materials Today Communications, 2017, 10: 112-119.
[10] Li J Y, Liu Y, Shu Q W, et al. One-pot hydrothermal synthesis of
3 结论 carbon dots with efficient up-and down-converted photoluminescence
for the sensitive detection of morin in a dual-readout assay[J].
Langmuir, 2017, 33(4): 1043-1050.
(1)以 WPU 作为新型碳源合成 CDs,将不同 [11] Ghosh B, Gogoi S, Thakur S, et al. Bio-based waterborne
质量 分数 的 CDs 加入 WPU 反 应 体系 中制得 polyurethane/carbon dot nanocomposite as a surface coating material[J].
Progress in Organic Coatings, 2016, 90: 324-330.
CDs/WPU 复合材料。 [12] Gogoi S, Maji S, Mishra D, et al. Nano-bio engineered carbon
(2)随着 CDs 的加入,胶膜的热稳定性得到一 dot-peptide functionalized water dispersible hyperbranched polyurethane
for bone tissue regeneration[J]. Macromolecular Bioscience, 2017,
定提高,其中 WPU-2 胶膜的热稳定性最佳,胶膜的 17(3): 1-15.
熔融温度先降低后升高,结晶度则逐渐增加。 [13] Yong Q, Pang H, Liao B, et al. Preparation and characterization of
low gloss aqueous coating via forming self-roughed surface based on
(3)随着 CDs 加入量的增加,胶膜的拉伸强度 waterborne polyurethane acrylate hybrid emulsion[J]. Progress in
和断裂伸长率均呈先升高后降低的趋势,且都高于 Organic Coatings, 2018, 115: 18-26.
[14] Cai Ling (蔡玲), Wu Lixia (吴立霞), Shi Yangyang (石阳阳).
未加入 CDs 制得的标样,表明 CDs 的加入有助于改 Preparation and performance comparison of different ionic polyurethane
善 WPU 的力学性能。其中,CDs 加入量为 0.5%时 nano-SiO 2 composite emulsions[J]. Fine Chemicals (精细化工),
2015, 32(1): 31-36.
拉伸强度和断裂伸长率达到最佳,分别为 36.80 MPa [15] Wen T, Yang B, Guo Y, et al. Organosilane-functionalized graphene
和 660%,与 WPU-0 相比,分别提高了 29.7%和 33.3%。 quantum dots and their encapsulation into bi-layer hollow silica
spheres for bioimaging applications[J]. Physical Chemistry Chemical
(4)4 组 CDs/WPU 复合胶膜在 365 nm 紫外灯 Physics, 2014, 16(42): 23188-23195.
照射下均发出蓝光,且具有激发光波长依赖性的荧 [16] Luo Zhen (罗珍), Tao Can (陶灿), Han Xixi (韩曦曦), et al. Effect
of water content on the aggregation and adhesion properties of waterborne
光性能,随着 CDs 加入量的增加,复合胶膜的荧光 polyurethane[J]. Journal of Chemical Engineering of Chinese
强度先升高后降低,加入的质量占树脂质量为 0.5% Universities (高校化学工程学报), 2017, 31(3): 641-649.
[17] Chiang C L, Chang R C, Chiu Y C. Thermal stability and degradation
时荧光强度最佳,量子产率和荧光寿命分别为 kinetics of novel organic/inorganic epoxy hybrid containing nitrogen/
4.15%和 2.43 ns。 silicon/phosphorus by sol-gel method[J]. Thermochimica Acta, 2007,
453(2): 97-104.
经过 CDs 改性后的 WPU 热稳定性、力学性能 [18] Saad G R, Seliger H. Biodegradable copolymers based on bacterial
均有提升,同时赋予了 WPU 优异的光学性能,使 poly((R)-3-hydroxybutyrate): Thermal and mechanical properties and
biodegradation behaviour[J]. Polymer Degradation and Stability,
WPU 在荧光涂料、皮革、纺织等领域具有广阔的应 2004, 83(1): 101-110.
用前景。 [19] Tao Can (陶灿). Regulation of micro-phase separation morphology,
properties and applications of polyurethane[D]. Hefei: Anhui University
参考文献: (安徽大学), 2018: 27-29.
[20] Xiao Y, Jiang L, Liu Z, et al. Effect of phase separation on the
[1] Xu Gewen (许戈文), Huang Yiping (黄毅萍), Bao Junjie (鲍俊杰) et al. crystallization of soft segments of green waterborne polyurethanes[J].
Waterborne polyurethane material[M]. Beijing: Chemical Industry Polymer Testing, 2017, 60: 160-165.
Press (化学工业出版社), 2007: 1-13. [21] Tan J, Zou R, Zhang J, et al. Large-scale synthesis of N-doped carbon
[2] Zhou X, Li Y, Fang C, et al. Recent advances in synthesis of waterborne quantum dots and their phosphorescence properties in polyurethane
polyurethane and their application in water-based ink: A review[J]. matrix[J]. Nanoscale, 2016, 8(8): 4742-4747.
Journal of Materials Science & Technology, 2015, 31(7): 708-722. [22] Gogoi S, Kumar M, Mandal B B, et al. High performance
[3] Sow C, Riedl B, Blanchet P. UV-waterborne polyurethane-acrylate luminescent thermosetting waterborne hyperbranched polyurethane/
nanocomposite coatings containing alumina and silica nanoparticles carbon quantum dot nano composite with in vitro cytocompatibility[J].
for wood: Mechanical, optical, and thermal properties assessment[J]. Composites Science and Technology, 2015, 118: 39-46.
Journal of Coatings Technology and Research, 2011, 8(2): 211-221. [23] Xie Z, Wang F, Liu C. Organic-inorganic hybrid functional carbon
[4] Tian K, Su Z, Wang H, et al. N-doped reduced graphene oxide/ dot gel glasses[J]. Advanced Materials, 2012, 24(13): 1716-1721.
waterborne polyurethane composites prepared by in situ chemical [24] Pan D, Zhang J, Li Z, et al. Blue fluorescent carbon thin films fabricated
reduction of graphene oxide[J]. Composites Part A: Applied Science from dodecylamine-capped carbon nanoparticles[J]. Journal of
and Manufacturing, 2017, 94: 41-49. Materials Chemistry, 2011, 21(11): 3565-3567.
[5] Dhoke S K, Khanna A S. Electrochemical behavior of nano-iron [25] Chen P C, Chen Y N, Hsu P C, et al. Photoluminescent organosilane-
oxide modified alkyd based waterborne coatings[J]. Materials Chemistry functionalized carbon dots as temperature probes[J]. Chemical
and Physics, 2009, 117(2/3): 550-556. Communications, 2013, 49(16): 1639-1641.