Page 122 - 《精细化工》2020年 第10期
P. 122

·2052·                            精细化工   FINE CHEMICALS                                 第 37 卷

            能在反应的有机溶剂中保持结构稳定。                                      of peptidomimetic oligomers via copper-catalyzed azide-alkyne [3+2]
                (2)作为 CuAAC 反应的非均相催化剂,                             cycloaddition[J]. Chemical Society Reviews, 2010, 39(4): 1325-1337.
                                                               [15]  ALONSO F, MOGLIE Y, RADIVOY G, et al. Copper nanoparticles
            CuBr-DCT 表现出优异的催化作用,在室温家用节                             in click chemistry[J]. Accounts of Chemical Research, 2015, 48(9):
            能灯的照射下,反应产率可达到 100%,且产物具有                              2516-2528.
                                                               [16]  KUMAR A, ERASQUIN U J, QIN G, et al. “Clickable”, polymerized
            单一性。                                                   liposomes as a versatile and stable platform for rapid optimization of
                (3)铜基金属有机大环代替铜盐催化 CuAAC                            their  peripheral  compositions[J].  Chemical  Communications,  2010,
            反应,应用于体内生物标记,发挥非均相催化优势                                 46(31): 5746-5748.
                                                               [17]  TINMAZ H B, ARSLAN I, TASDELEN M A, et al. Star polymers
            并避免生物体内铜的堆积,这将是体内生物标记研                                 by  photoinduced  copper-catalyzed  azide-alkyne  cycloaddition  click
            究的方向。                                                  chemistry[J].  Journal  of  Polymer  Science:  Part  A,  2015,  53(14):
                                                                   1687-1695.
            参考文献:                                              [18]  HASHIDZUME A, NAKAMURA T, SATO T, et al. Copper-catalyzed
                                                                   azide-alkyne  cycloaddition  oligomerization  of  3-azido-1-propyne
            [1]   FUJITA M. Metal-directed self-assembly of two- and three-dimensional   derivatives[J]. Polymer, 2013, 54(14): 3448-3451.
                 synthetic receptors[J]. Chemical Society Reviews, 1998, 27(6): 417-425.     [19]  LAUER M H, VRANKEN C, DEEN J, et al. Methyltransferase-directed
            [2]   THANASEKARAN  P,  LEE  C,  LU  K,  et al.  Neutral  discrete   covalent  coupling  of  fluorophores  to  DNA[J].  Chemical  Science,
                 metal-organic  cyclic  architectures:  Opportunities  for  structural   2017, 8(5): 3804-3811.
                 features and properties in confined spaces[J]. Coordination Chemistry   [20]  BAI Y G, FENG X X, XING H, et al. A highly efficient single-chain
                 Reviews, 2014, 280(50): 96-175.                   metal-organic nanoparticle catalyst for alkyne-azide “click” reactions
            [3]   COOK T R, STANG P J. Recent developments in the preparation and   in water and in cells[J]. Journal of the American Chemical Society,
                 chemistry  of  metallacycles  and  metallacages  via  coordination[J].   2016, 138(35): 11077-11080.
                 Chemical Reviews, 2015, 115(15): 7001-7045.     [21]  BIGAGLI  E,  LUCERI  C,  BERNARDINI  S,  et al.  Extremely  low
            [4]   JING  X,  HE  C,  YANG  Y,  et al.  A  metal-organic  tetrahedron  as  a   copper  concentrations  affect  gene  expression  profiles  of  human
                 redox vehicle to encapsulate organic dyes for photocatalytic proton   prostate  epithelial  cell  lines[J].  Chemico-Biological  Interactions,
                 reduction[J].  Journal  of  the  American  Chemical  Society,  2015,   2010, 188(1): 214-219.
                 137(11): 3967-3974.                           [22]  TESTA C, SCRIMA M, GRIMALDI M, et al. 1, 4-Disubstituted-[1,
            [5]   LI Z W, WANG X, WEI L Q, et al. Subcomponent self-assembly of   2,3]triazolyl-containing  analogues  of  MT- Ⅱ :  Design,  synthesis,
                 covalent metallacycles templated by catalytically active seven-coordinate   conformational  analysis,  and  biological  activity[J].  Journal  of
                 transition  metal  centers  [J].  Journal  of  the  American  Chemical   Medicinal Chemistry, 2014, 57(22): 9424-9434.
                 Society, 2020, 142(16): 7283-7288.            [23]  BEVILACQUA  V,  KING  M,  CHAUMONTET  M,  et al.
            [6]   COOK T R, ZHENG Y R, STANG P J. Metal-organic frameworks   Copper-chelating  azides  for  efficient  click  conjugation  reactions  in
                 and self-assembled supramolecular coordination complexes: Comparing   complex media[J]. Angewandte Chemie International Edition, 2014,
                 and contrasting the design, synthesis, and functionality of metal-organic   53(23): 5872-5876.
                 materials[J]. Chemical Reviews, 2013, 113(1): 734-777.     [24]  HADDAD  A  Z,  GARABATO  B  D,  KOZLOWSKI  P  M,  et al.
            [7]   RUBEN  M,  ROJO  J,  ROMEROSALGUERO  F  J,  et al.  Grid-type   Beyond  metal-hydrides:  Non-transition-metal  and  metal-free
                 metal ion architectures: Functional metallosupramolecular arrays[J].   ligand-centered  electrocatalytic  hydrogen  evolution  and  hydrogen
                 Angewandte Chemie International Edition, 2004, 43(28): 3644-3662.     oxidation[J].  Journal  of  the  American  Chemical  Society,  2016,
            [8]   GIANNESCHI N C, MASAR M S, MIRKIN C A, et al. Development   138(25): 7844-7847.
                 of  a  coordination  chemistry-based  approach  for  functional   [25]  HE  C, WANG J,  ZHAO L,  et al.  A  photoactive  basket-like
                 supramolecular structures[J]. Accounts of Chemical Research, 2005,   metal-organic tetragon worked as an enzymatic molecular flask for
                 38(11): 825-837.                                  light  driven  H 2  production[J].  Chemical  Communications,  2013,
            [9]   GUO X Y, ZENG L, WANG Z, et al. Photocatalytic copper-catalyzed   49(6): 627-629.
                 azide-alkyne  cycloaddition  click  reaction  with  Cu(Ⅱ)  coordination   [26]  LI  G,  ZHOU  X,  YANG  P,  et al.  Synthesis  of  a  novel
                 polymer[J]. RSC Advances, 2017, 7(83): 52907-52913.     methylene-bridged biscarbazole derivative and evaluation of its DNA
            [10]  HOU G G, MA J P, SUN T, et al. A binuclear Cu  Ⅱ  metallacycle   and  nucleotide  binding  properties[J].  Tetrahedron  Letters,  2014,
                 capable  of  discerning  between  pyrazine  and  its  different  methyl-   55(51): 7054-7059.
                 substituted  derivatives  based  on  reversible  intracage  metal-ligand   [27]  LI  L,  WU  Y  Q,  ZHOU  Q  L,  et al.  Experimental  and  theoretical
                 binding[J]. Chemistry—A European Journal, 2009, 15(10): 2261-2265.     studies on the one-photon and two-photon properties of a series of
            [11]  RANI P,  SHARMA A,  HUSAIN A,  et al.  Selective  recognition  of   carbazole  derivatives  containing  styrene[J].  Journal  of  Physical
                  3+
                         2−
                 Fe   and  CrO 4   ions  using  a  Zn(Ⅱ)  metallacycle  and  a  Cd(Ⅱ)   Organic Chemistry, 2012, 25(5): 362-372.
                 coordination polymer and their heterogeneous catalytic application[J].   [28]  CHANG Z D, JING X, HE C, et al. Silver clusters as robust nodes
                 Crystengcomm, 2019, 21(48): 7447-7459.            and π-activation sites for the construction of heterogeneous catalysts
            [12]  ZHENG Y Z, TONG M L, ZHANG W X, et al. Assembling magnetic   for  the  cycloaddition  of  propargylamines[J].  ACS  Catalysis,  2018,
                 nanowires into networks: A layered CoⅡ  carboxylate coordination   8(2): 1384-1391.
                 polymer  exhibiting  single-chain-magnet  behavior[J].  Angewandte   [29]  CHEN X M (陈小明), CAI J W (蔡继文). Principles and practice of
                 Chemie International Edition, 2006, 45(38): 6310-6314.     single  crystal  structure  analysis[M].  2nd  ed.  Beijing:  Science Press
            [13]  DALTON D M, ELLIS S R, NICHOLS E M, et al. Supramolecular   (科学出版社), 2007.
                    12-
                 Ga 4L 6   cage  photosensitizes  1,  3-rearrangement  of  encapsulated   [30]  HIMO  F,  LOVELL  T,  HILGRAF  R,  et al.  Copper(Ⅰ)-catalyzed
                 guest via photoinduced electron transfer[J]. Journal of the American   synthesis of azoles. DFT study predicts unprecedented reactivity and
                 Chemical Society, 2015, 137(32): 10128-10131.     intermediates[J].  Journal  of  the  American  Chemical  Society,  2005,
            [14]  HOLUB J M, KIRSHENBAUM K. Tricks with clicks: Modification    127(1): 210-216.
   117   118   119   120   121   122   123   124   125   126   127