Page 68 - 《精细化工》2020年第11期
P. 68
·2214· 精细化工 FINE CHEMICALS 第 37 卷
[3] YAO M (姚穆). Science of textile material[M].Beijing: China [23] ZOU Z G (邹振高), SHI M W (施媚梧), WANG X T (王西亭), et al.
Textile Press (中国纺织出版社), 2001. Technical status and development trend of conventional flame
[4] ZHAO B (赵兵), HUANG X C (黄小萃), QI N (祁宁), et al. retardant fibers[J]. China Textile Leader (纺织导报), 2006, (3):
Research progress of antibacterial cotton fabric treated with silver 44-49.
nanoparticles based on covalent bond[J]. Journal of Textile Research [24] HE X L (和秀岭). Technical status and development trend of
(纺织学报), 2020, 41(3): 188-196. conventional flame retardant fibers[J]. Guangdong Science &
[5] HUANG G (黄故), CHEN L (陈莉). Improvement of moisture Technology (广东科技), 2013, 2: 181-182.
absorbency of naturally colored cotton fiber by pectinase [25] LEVAN S L. Chemistry of fire retardancy[M]. Washington:
treatment[J]. Journal of Textile Research (纺织学报), 2007, (2): American Chemical Society, 2009: 531.
264-266. [26] ALONGI J, CARLETTO R A, BLASIO A D, et al. Intrinsic
[6] NING J X (宁军霞), LI Z S (李佐深), LING X L (凌新龙). intumescent-like flame retardant properties of DNA-treated cotton
Performance and modification technology progress of jute fiber[J]. fabrics[J]. Carbohydrate Polymers, 2013, 9(1): 296-304.
Journal of Textile Science and Engineering (纺织科学与工程学报), [27] ALONGI J, BLASIO A D, MALUCELLI G, et al. Thermal
2020, 37(1): 88-96. degradation of DNA, an all-in-one natural intumescent flame
[7] SU X Z (苏旭中), GU Q R (顾秦榕), ZHAO C (赵超). Discussion retardant[J]. Polymer Degradation and Stability, 2015, 113: 110-118.
on the wearing properties of hemp fabric[J]. Shanghai Textile [28] ALONGI J, CARLETTO R A, BOSCO F, et al. Caseins and
Science & Technology (上海纺织科技), 2018, 46(9): 14-15. hydrophobins as novel green flame retardants for cotton fabrics[J].
[8] WANG L J (王乐军), LIU Y N (刘怡宁), FANG D (房迪), et al. Polymer Degradation and Stability, 2014, 99: 111-117.
Status and development research of lyocell fiber at home and [29] BOSCO F, CARLETTO R A, ALONGI J, et al. Thermal stability and
abroad[J]. Journal of Textile Research (纺织学报), 2017, 38(4): flame resistance of cotton fabrics treated with whey proteins[J].
164-170. Carbohydrate Polymers, 2013, 94(1): 372-377.
[9] WANG P (王鹏). Analysis and evaluation of innovation technology [30] WANG X Y, LU C Q, CHEN C X, et al. Effect of chicken-feather
and effect of viscose fiber production[J]. New Technology & New protein-based flame retardant on flame retarding performance of
Products of China (中国新技术新产品), 2016, 18: 42. cotton fabric[J]. Journal of Applied Polymer Science, 2014, 131(15):
[10] DING C (丁辰). Study on flame retardant modified lyocell fiber by 1-8.
surface grafting method[D]. Tianjin: Tianjin Polytechnic University [31] ZHAO B, KOLIBABA T J, LAZAR S, et al. Facile two-step
(天津工业大学), 2019. phosphazine-based network coating for flame retardant cotton[J].
[11] SHI H Y (施海云), FANG M X (方梦祥), WANG S R (王树荣), et Cellulose, 2020, 27(7): 4123-4132.
al. The position and education of fire science and fire-protection [32] MA J L, WANG X, LI J, et al. Facile preparation of flame retardant
engineering[J]. Fire Science and Technology (消防科学与技术), cotton fabric via adhesion of Mg(OH) 2 by the assistance of ionic
2003, 6: 436-440. liquid[J]. Polymers, 2020, 12(2): 259.
[12] WEIL E D, LEVCHIK S V. Flame retardants in commercial use or [33] XUE C H, WU Y, GUO X J, et al. Superhydrophobic flame-retardant
development for polyolefins[J]. Flame Retardants, 2008, 26(3): and conductive cotton fabrics via layer-by-layer assembly of carbon
121-140. nanotubes for flexible sensing electronics[J]. Cellulose, 2020, 27(6):
[13] CHANDLER S E, BALDWIN R. Furniture and furnishings in the 3455-3468.
home-some fire statistics[J]. Fire and Materials, 1976, 1(2): 76-82. [34] LIU X H, ZHANG Q Y, PENG B, et al. Flame retardant cellulosic
[14] JIA Y L, HU Y W, ZHENG D D, et al. Synthesis and evaluation of an fabrics via layer-by-layer self-assembly double coating with egg
efficient, durable, and environmentally friendly flame retardant for white protein and phytic acid[J]. Journal of Cleaner Production,
cotton[J]. Cellulose, 2017, 24(2): 1159-1170. 2020, 243: 118641.
[15] JIA Y L, LU Y, ZHANG G X, et al. Facile synthesis of an [35] PAN Y, WANG W, LIU L X, et al. Influences of metal ions
eco-friendly nitrogen-phosphorus ammonium salt to enhance crosslinked alginate based coatings on thermal stability and fire
durability and flame retardancy of cotton[J]. Journal of Materials resistance of cotton fabrics[J]. Carbohydrate Polymers, 2017, 170:
Chemistry A, 2017, 5(20): 9970-9981. 133-139.
[16] PAN H F, WANG W, PAN Y, et al. Formation of self-extinguishing [36] FAN C H (樊崇辉), WANG H Y (王海洋), XU Y (徐阳). Efficient
flame cotton fabrics via layer-by-layer assembly of chitin flame-retardant cotton fabric prepared by MH self-assembly[J]. New
derivatives[J]. Carbohydrate Polymers, 2015, 115: 516-524. Chemical Materials (化工新型材料), 2019, 47(8): 106-109, 114.
[17] CHANG S C, SLOPEK R P, CONDON B, et al. Surface coating for [37] WEI Z B (魏志彪), CHEN X L (陈希磊). Flame retardant cotton
flame retardant behavior of cotton fabric using a continuous fabric based on combination of cellulose phosphate and chitosan in
layer-by-layer process[J]. Industrial and Engineering Chemistry layer by layer self-assembly technique[J]. Journal of Qingdao
Research, 2014, 53(10): 3805-3812. University of Science and Technology (Natural Science Edition) (青
[18] HENCH L L, WEST J K. The sol-gel process[J]. Chemical Reviews, 岛大学学报: 自然科学版), 2019, 40(1): 77-83.
1990, 90(1): 33-72. [38] LI Z F, ZHANG C J, CUI L, et al. Fire retardant and thermal
[19] ALONGI J, COLLEONI C, ROSACE G, et al. The role of degradation properties of cotton fabrics based on APTES and sodium
pre-hydrolysis on mufti step sol-gel processes for enhancing the phytate through layer-by-layer assembly[J]. Journal of Analytical &
flame retardancy of cotton[J]. Cellulose, 2013, 20(1): 525-535. Applied Pyrolysis, 2017, 123: 216-223.
[20] ALONGI J, CIOBANU M, MALUCELLI G. Sol-gel treatments for [39] NABIPOUR H, WANG X, SONG L, et al. Hydrophobic and
enhancing flame retardancy and thermal stability of cotton fabrics: flame-retardant finishing of cotton fabrics for water-oil separation[J].
Optimization of the process and evaluation of the durability[J]. Cellulose, 2020, 27(7): 4145-4159.
Cellulose, 2011, 18(1): 167-177. [40] LIN D M, ZENG X R, LI H Q, et al. One-pot fabrication of
[21] XU L J, WANG W, YU D. Preparation of a reactive flame retardant superhydrophobic and flame-retardant coatings on cotton fabrics via
and its finishing on cotton fabrics based on click chemistry[J]. RSC sol-gel reaction[J]. Journal of Colloid and Interface Science, 2019,
Advances, 2017, 7(4): 2044-2050. 533: 198-206.
[22] WU W, YANG C Q. Comparison of different reactive [41] CASTELLANO A, COLLEONI C, IACONO G, et al. Synthesis and
organophosphorus flame-retardant agents for cotton: Part I. The characterization of a phosphorous/nitrogen based sol-gel coating as a
bonding of the flame-retardant agents to cotton[J]. Polymer novel halogen and formaldehyde-free flame retardant finishing for
Degradation and Stability, 2006, 91(11): 2541-2548. cotton fabric[J]. Polymer Degradation and Stability, 2019, 162: