Page 60 - 《精细化工》2020年第3期
P. 60
·478· 精细化工 FINE CHEMICALS 第 37 卷
对 4 种染料在 30 min 时的吸附已基本趋于平衡,其吸 of dyes from water[J]. Carbohydrate Polymers, 2014, 112: 668-676.
附量从大到小依次为为酸性蓝 92.10 mg/g、酸性黄 [5] CHAUDHARY J P, VADODARIYA N, NATARAJ S K, et al.
89.09 mg/g、分散黄 85.03 mg/g 和分散蓝 79.62 mg/g。 Chitosan-based aerogel membrane for robust oil-in-water emulsion
separation[J]. ACS Applied Materials & Interfaces, 2015, 7:
3 结论 24957-24962.
[6] MOKHENA T C, LUYT A S. Development of multifunctional nano/
功能皮层成膜方法及厚度的控制一直是复合膜 ultrafiltration membrane based on a chitosan thin film on alginate
研究的重点。本文通过探讨静电纺丝、冰冻/冷干、冰 electrospun nanofibres[J]. Journal of Cleaner Production, 2017, 156:
冻/液氮/冷干和液氮/冷干 4 种不同的成膜方式,对 470-479.
比分析了 CA/CS 膜的表面形貌和截面片层堆积结 [7] YANG J, SONG H, YAN X, et al. Superhydrophilic and
superoleophobic chitosan-based nanocomposite coatings for oil/water
构。最终确定在采用涂覆法的同时利用液氮对
separation[J]. Cellulose, 2014, 21(3): 1851-1857.
CA/CS 膜进行冷冻浸渍处理,即冷冻诱导相分离
[8] WANG J J, ZENG Z W, XIAO R Z, et al. Recent advances of
(CIPS)法。在保持 CS 层具有一定厚度的同时对
chitosan nanoparticles as drug carriers[J]. International Journal of
其进行开孔,利用液氮直接进行冷冻时,固化温度 Nanomedicine, 2011, 6: 765-774.
低,降温速率快,水分子被迅速冻结,CS 层膜表 [9] DU Y, LI Y, WU T. A superhydrophilic and underwater superoleophobic
面呈现出较多微米级的孔洞以及截面独特的薄层 chitosan-TiO 2 composite membrane for fast oil-in-water emulsion
状叠加结构,从而使得复合膜在保持高截留吸附性 separation[J]. RSC Advances, 2017, 7: 41838-41846.
能的同时大大提高了复合膜的渗透通量。当控制操 [10] GOETZ L A, JALVO B, ROSAL R, et al. Superhydrophilic
anti-fouling electrospun cellulose acetate membranes coated with chitin
作压力为 0.10 MPa 时,对酸性蓝的渗透通量可达 9.26×
nanocrystals for water filtration[J]. Journal of Membrane Science,
3
2
10 L/(m ·h),截留率为 98.6%。对膜的吸附动力学及
2016, 510: 238-248.
等温吸附曲线研究结果表明,其吸附过程更符合拟
[11] PENG L, LI H, MENG Y. Layer-by-layer structured polysaccharides-
二级动力学模型,且符合 Langmuir 单分子层吸附。 based multilayers on cellulose acetate membrane: Towards better
本文为静电纺纤维膜在高通量高截留过滤分离领域 hemocompatibility, antibacterial and antioxidant activities[J]. Applied
方面的研究与应用提供了新的思路和方法。 Surface Science, 2017, 401: 25-39.
[12] HU X, HU J, TIAN J, et al. Polyprodrug amphiphiles: Hierarchical
参考文献: assemblies for shape-regulated cellular internalization, trafficking,
[1] NATARAJ S K, ROY S, PATIL M B, et al. Cellulose acetate-coated and drug delivery[J]. Journal of the American Chemical Society,
α-alumina ceramic composite tubular membranes for wastewater 2013, 135(46): 17617-17629.
treatment[J]. Desalination, 2011, 281: 348-353. [13] MAI Y, EISENBERG A. Self-assembly of block copolymers[J].
[2] TSIOPTSIAS C, SAKELLARIOU K G, TSIVINTZELIS I, et al. Chemical Society Reviews, 2012, 41(18): 5969-5985.
Preparation and characterization of cellulose acetate-Fe 2O 3 composite [14] YAO X, SONG Y, JIANG L. Applications of bio-inspired special
nanofibrous materials[J]. Carbohydrate Polymers, 2010, 81(4): 925- wettable surfaces[J]. Advanced Materials, 2011, 23(6): 719-734.
930. [15] LAI F, MIAO Y E, HUANG Y, et al. Flexible hybrid membranes of
[3] WANG Ming (王铭), ZHAO Xiaoyan (赵晓燕), LIU Yuan (刘远), NiCo 2O 4-doped carbon nanofiber@MnO 2 core-sheath nanostructures
et al. Preparation and characterization of high flux cellulose acetate for high-performance supercapacitors[J]. Journal of Physical
composite membrane[J]. Polymer Materials Science & Engineering Chemistry C, 2015, 119(24): 13442-13450.
(高分子材料科学与工程), 2015, 31(5): 164-168. [16] LIU Q, WANG Y, DAI L, et al. Scalable fabrication of nanoporous
[4] KARIM Z, MATHEW A P, GRAHN M, et al. Nanoporous membranes carbon fiber films as bifunctional catalytic electrodes for flexible
with cellulose nanocrystals as functionalentity in chitosan: Removal Zn-Air batteries[J]. Advanced Materials, 2016, 28(15): 3000-3006.