Page 194 - 《精细化工》2020年第5期
P. 194

·1044·                            精细化工   FINE CHEMICALS                                 第 37 卷

                (3)探讨了 GO 对泥页岩的封堵机理,明确了                            Synthesis and evaluation of a new graphene oxide high temperature
                                                                   filter loss reducer[J]. Drilling fluid & Completion fluid (钻井液与完
            GO 作为封堵剂的优势在于其具有优异的纳米尺寸和
                                                                   井液), 2017, 34(4): 9-14.
            片层状的膜结构,可以在岩心表面成膜并以填充、覆                            [18]  WANG W (王伟), XIA X C (夏小春), JIANG C Y (蒋程扬), et al.
            盖的方式贴附在岩心表面,从而达到封堵岩心的目的。                               Preparation of graphene oxide and its fluid loss contro; property in
                                                                   drilling  fluid[J].  Chemistry  &  Bioengineering  (化学与生物工程),
                                                                   2018, 35(10): 49-53.
            参考文献:
                                                               [19]  MARTIN P. Electrochemistry of graphene, graphene oxide and other
            [1]   ZHANG  Q  G,  JIA  W  Y,  FAN  X  Y,  et al.  A  review  of  the  shale   graphenoids:  Review[J].  Electrochemistry  Communications,  2013,
                 wellbore stability mechanism based on mechanical-chemical coupling   36: 14-18.
                 theories[J]. Petroleum, 2015, 1(2): 91-96.    [20]  XU J F (徐加放), QIU Z S (邱正松), QIN T (秦涛), et al. Experimental
            [2]   XIAO K, JIANG H, WANG H, et al. Adaptability study on plugging   study on pressure transfer characteristics of mud shale[J]. Petroleum
                 thief zones with asphalt particle in polymer flooding offshore field[C].   Drilling Techniques (石油钻探技术), 2004, 32(1): 23-25.
                 SPE  Energy  Resources  Conference,  Tobago:  Society  of  Petroleum   [21]  Petroleum Geology Exploration Professional Standardization Technical
                 Engineers, 2014.                                  Committee (石油地质勘探专业标准化技术委员会). Static nitrogen
            [3]   BAURE S, GRONEWALD P, HAMITON J, et al. High-temperature   adsorption capacity method for determination of rock specific surface
                 plug  formation  with  silicates[C].  SPE  International  Symposium  on   and pore size distribution: SY/T 6154—1995[S]. Beijing: China National
                 Oilfield Chemistry, USA: Society of Petroleum Engineers, 2005.   Petroleum Corporation (中国石油天然气集团公司), 1995: 1-8.
            [4]   DORMAN  J, LAKATOS J I,  SZENTES G,  et al.  Mitigation  of   [22]  SUN M, LI J R. Graphene oxide membranes: Functional structures,
                 formation damage and wellbore instability in unconventional reservoirs   preparation and environmental applications[J]. Nanotoday, 2018, 20:
                 using improved particle size analysis and design of drilling fluids[C].   121-137.
                 SPE European Formation Damage Conference and Exibition, Hungary:   [23]  ZHANG S F (张世锋), QIU Z S (邱正松), WANG H G (汪海阁), et
                 Society of Petroleum Engineers, 2015.             al. Monte Carlo estimation on the parameters of shale chemo-poro-
            [5]   QIU Z S (邱正松), LIU J Y (刘均一), ZHOU B Y (周宝义), et al.   mechanical  coupling  mode[J].  Acta  Petrolei  Sinica  (石油学报),
                 Tight  fracture-plugging  mechanism  andoptimized  design  for   2016, 37(7): 921-929.
                 plugging  drilling  fluid[J].  Acta  Petrolei  Sinica  (石油学报),  2014,   [24]  HE  S  (何恕),  ZHENG  T  (郑涛),  JING  Z  X  (敬增秀),  et al.
                 37(2): 137-143.                                   Evaluation of wellbore stability of silicate drilling fluid by pressure
            [6]   ZHANG J B (张金波), YAN J N (鄢捷年). New theory and method   transfer experimental technique[J]. Drilling fluid & Completion fluid
                 for  optimizing  the  particle  size  distribution  of  bridging  agents  in   (钻井液与完井液), 2011, 18(6): 10-13.
                 drilling  fluids[J].  Acta  Petrolei  Sinica  (石油学报),  2004,  25(6):   [25]  AUDREY O S, FRANCOIS R, CLAUDINE B, et al. Microfracturing
                 88-91.                                            and  microporosity  in  shales[J].  Earth-Science  Reviews,  2016,  162:
            [7]   XU  L  (徐琳),  DENG  M  Y  (邓明毅), GUO  Y J (郭拥军),  et al.   198-226.
                 Research  on  application  of  nano-plugging  agent  in  drilling  fluid[J].   [26]  ZHANG  X  H  (张孝华), LUO X S (罗兴树).  Modern  mud
                 Applied Chemical Industry (应用化工), 2016, 45(4): 743-746.   experiment technology[M]. Qingdao: China University of Petroleum
            [8]   NORASAZLY M T, SEAN L. Nano graphene application improving   Press (中国石油大学出版社), 1999.
                 drilling  fluids  performance[C].  International  Petroleum  Technology   [27]  MORLEY C K, HANSBERRY R, Collins A, et al. Review of major
                 Conference, Qatar: International Petroleum Technology Conference,   shale-dominated detachment and thrust characteristics in the diagenetic
                 2015.
            [9]   BARROSO  A  L,  MARCELINO  C  P,  LEAL  A  B,  et al.  New   zone: Part II, rock mechanics and microscopic scale[J]. Earth-Science
                                                                   Reviews, 2018, 176: 19-50.
                 generation nano technology drilling fluids application associated to   [28]  DING L, NI H J, LI M K, et al. Wellbore collapse pressure analysis
                 geomechanic  best  practices:  field  trial  record  in  bahia-brazil[C].
                 Offshole  Technology  Conference,  USA:  Offshore  Technology   under  supercritical  carbon  dioxide  drilling  condition[J].  Journal  of
                 Conference, 2018.                                 Petroleum Science and Engineering, 2018, 161: 458-467.
            [10]  RAFATI  R,  SMITH  S  R,  HADDAD  A  S,  et al.  Effect  of   [29]  HAIMSON  B.  Micromechanisms  of  borehole  instability  leading to
                 nanoparticles  on  the  modifications  of  drilling  fluids  properties:  A   breakouts in rocks[J]. International Journal of Rock Mechanics and
                 review  of  recent  advances[J].  Journal  of  Petroleum  Science  and   Mining Science, 2007, 44(2): 157-173.
                 Engineering, 2018, 161: 61-76.                [30]  ZHANG X, QIU Z S, SUN B J, et al. Formation damage mechanisms
            [11]  NEUBERGER N, ADIDHARMA H, FAN M. Graphene: A review of   associated with drilling and completion fluids for deepwater reservoirs[J].
                 applications in the petroleum industry[J]. Journal of Petroleum Science   Journal of Petroleum Science and Engineering, 2019, 173: 112-121.
                 and Engineering, 2018, 167: 152-159.          [31]  RAJAURA R S, SRIVASTAVA S, Sharma V, et al. Role of interlayer
            [12]  CHAI Y H, SUZANA Y, CHOK V S, et al. Rheological behaviour of   spacing and functional group on the hydrogen storage properties of
                 graphene  nano-sheets  in  hydrogenated  oil-based  drilling  fluid[J].   graphene oxide and reduced graphene oxide[J]. International Journal
                 Procedia Engineering, 2016, 148: 49-56.           of Hydrogen Energy, 2016, 41(22): 9453-9461.
            [13]  REN S, PING R, QI Y. Preparations, properties and applications of   [32]  DU  S  N,  SUN  J  L,  WU  P.  Preparation,  characterization  and
                 graphene  in  functional  devices:  A  concise  review[J].  Ceramics   lubrication performances of graphene oxide-TiO 2 nanofluid in rolling
                 International, 2018, 44(11): 11940-11955.         strips[J]. Carbon, 2018, 140: 338-351.
            [14]  CHEN C, ZHU X Y, CHEN B L. Covalently cross-linked graphene   [33]  YANG J Z (杨建召), SUN H J (孙红娟), PENG T J (彭同江), et al.
                 oxide  aerogel  with  stable  structure  for  high-efficiency  water   Sensitivity and mechanism of graphene oxide with different oxidation
                 purification[J]. Chemical Engineering Journal, 2018, 354: 896-904.   degree[J]. Fine Chemicals (精细化工), 2019, 36(3): 380-386.
            [15]  WANG  S  F,  WANG  C,  JI  X,  et al.  Surfactant-  and  sonication-free   [34]  MA X J, LI M, LIU X, et al. A graphene oxide nanosheet-modified
                 exfoliation  approach  to  aqueous  graphene  dispersion[J].  Materials   Ti nanocomposite electrode with enhanced electrochemical property
                 Letters, 2018, 217: 67-70.                        and stability for nitrate reduction[J]. Chemical Engineering Journal,
            [16]  XUAN  Y  (宣扬), JIANG G C (蒋官澄),  LI  L  (黎凌),  et al.   2018, 348: 171-179.
                 Preparation  and  evaluation  of  nano-graphene  oxide  as  a  high-   [35]  XU J F (徐加放), QIU Z S (邱正松), LÜ K H (吕开河). Pressure
                 performance fluid loss additive[J]. Acta Petrolei Sinica (石油学报),   transmission  testing  technology  and  simulation  equipment  for
                 2013, 34(5): 1010-1016.                           hydra-mechanics coupling of shale[J]: Acta Petrolei Sinica (石油学
            [17]  QU  J  F  (曲建峰),  QIU Z S (邱正松), GUO B Y (郭保雨),  et al.   报), 2005, 26(6): 115-118.
   189   190   191   192   193   194   195   196   197   198   199