Page 194 - 《精细化工》2020年第5期
P. 194
·1044· 精细化工 FINE CHEMICALS 第 37 卷
(3)探讨了 GO 对泥页岩的封堵机理,明确了 Synthesis and evaluation of a new graphene oxide high temperature
filter loss reducer[J]. Drilling fluid & Completion fluid (钻井液与完
GO 作为封堵剂的优势在于其具有优异的纳米尺寸和
井液), 2017, 34(4): 9-14.
片层状的膜结构,可以在岩心表面成膜并以填充、覆 [18] WANG W (王伟), XIA X C (夏小春), JIANG C Y (蒋程扬), et al.
盖的方式贴附在岩心表面,从而达到封堵岩心的目的。 Preparation of graphene oxide and its fluid loss contro; property in
drilling fluid[J]. Chemistry & Bioengineering (化学与生物工程),
2018, 35(10): 49-53.
参考文献:
[19] MARTIN P. Electrochemistry of graphene, graphene oxide and other
[1] ZHANG Q G, JIA W Y, FAN X Y, et al. A review of the shale graphenoids: Review[J]. Electrochemistry Communications, 2013,
wellbore stability mechanism based on mechanical-chemical coupling 36: 14-18.
theories[J]. Petroleum, 2015, 1(2): 91-96. [20] XU J F (徐加放), QIU Z S (邱正松), QIN T (秦涛), et al. Experimental
[2] XIAO K, JIANG H, WANG H, et al. Adaptability study on plugging study on pressure transfer characteristics of mud shale[J]. Petroleum
thief zones with asphalt particle in polymer flooding offshore field[C]. Drilling Techniques (石油钻探技术), 2004, 32(1): 23-25.
SPE Energy Resources Conference, Tobago: Society of Petroleum [21] Petroleum Geology Exploration Professional Standardization Technical
Engineers, 2014. Committee (石油地质勘探专业标准化技术委员会). Static nitrogen
[3] BAURE S, GRONEWALD P, HAMITON J, et al. High-temperature adsorption capacity method for determination of rock specific surface
plug formation with silicates[C]. SPE International Symposium on and pore size distribution: SY/T 6154—1995[S]. Beijing: China National
Oilfield Chemistry, USA: Society of Petroleum Engineers, 2005. Petroleum Corporation (中国石油天然气集团公司), 1995: 1-8.
[4] DORMAN J, LAKATOS J I, SZENTES G, et al. Mitigation of [22] SUN M, LI J R. Graphene oxide membranes: Functional structures,
formation damage and wellbore instability in unconventional reservoirs preparation and environmental applications[J]. Nanotoday, 2018, 20:
using improved particle size analysis and design of drilling fluids[C]. 121-137.
SPE European Formation Damage Conference and Exibition, Hungary: [23] ZHANG S F (张世锋), QIU Z S (邱正松), WANG H G (汪海阁), et
Society of Petroleum Engineers, 2015. al. Monte Carlo estimation on the parameters of shale chemo-poro-
[5] QIU Z S (邱正松), LIU J Y (刘均一), ZHOU B Y (周宝义), et al. mechanical coupling mode[J]. Acta Petrolei Sinica (石油学报),
Tight fracture-plugging mechanism andoptimized design for 2016, 37(7): 921-929.
plugging drilling fluid[J]. Acta Petrolei Sinica (石油学报), 2014, [24] HE S (何恕), ZHENG T (郑涛), JING Z X (敬增秀), et al.
37(2): 137-143. Evaluation of wellbore stability of silicate drilling fluid by pressure
[6] ZHANG J B (张金波), YAN J N (鄢捷年). New theory and method transfer experimental technique[J]. Drilling fluid & Completion fluid
for optimizing the particle size distribution of bridging agents in (钻井液与完井液), 2011, 18(6): 10-13.
drilling fluids[J]. Acta Petrolei Sinica (石油学报), 2004, 25(6): [25] AUDREY O S, FRANCOIS R, CLAUDINE B, et al. Microfracturing
88-91. and microporosity in shales[J]. Earth-Science Reviews, 2016, 162:
[7] XU L (徐琳), DENG M Y (邓明毅), GUO Y J (郭拥军), et al. 198-226.
Research on application of nano-plugging agent in drilling fluid[J]. [26] ZHANG X H (张孝华), LUO X S (罗兴树). Modern mud
Applied Chemical Industry (应用化工), 2016, 45(4): 743-746. experiment technology[M]. Qingdao: China University of Petroleum
[8] NORASAZLY M T, SEAN L. Nano graphene application improving Press (中国石油大学出版社), 1999.
drilling fluids performance[C]. International Petroleum Technology [27] MORLEY C K, HANSBERRY R, Collins A, et al. Review of major
Conference, Qatar: International Petroleum Technology Conference, shale-dominated detachment and thrust characteristics in the diagenetic
2015.
[9] BARROSO A L, MARCELINO C P, LEAL A B, et al. New zone: Part II, rock mechanics and microscopic scale[J]. Earth-Science
Reviews, 2018, 176: 19-50.
generation nano technology drilling fluids application associated to [28] DING L, NI H J, LI M K, et al. Wellbore collapse pressure analysis
geomechanic best practices: field trial record in bahia-brazil[C].
Offshole Technology Conference, USA: Offshore Technology under supercritical carbon dioxide drilling condition[J]. Journal of
Conference, 2018. Petroleum Science and Engineering, 2018, 161: 458-467.
[10] RAFATI R, SMITH S R, HADDAD A S, et al. Effect of [29] HAIMSON B. Micromechanisms of borehole instability leading to
nanoparticles on the modifications of drilling fluids properties: A breakouts in rocks[J]. International Journal of Rock Mechanics and
review of recent advances[J]. Journal of Petroleum Science and Mining Science, 2007, 44(2): 157-173.
Engineering, 2018, 161: 61-76. [30] ZHANG X, QIU Z S, SUN B J, et al. Formation damage mechanisms
[11] NEUBERGER N, ADIDHARMA H, FAN M. Graphene: A review of associated with drilling and completion fluids for deepwater reservoirs[J].
applications in the petroleum industry[J]. Journal of Petroleum Science Journal of Petroleum Science and Engineering, 2019, 173: 112-121.
and Engineering, 2018, 167: 152-159. [31] RAJAURA R S, SRIVASTAVA S, Sharma V, et al. Role of interlayer
[12] CHAI Y H, SUZANA Y, CHOK V S, et al. Rheological behaviour of spacing and functional group on the hydrogen storage properties of
graphene nano-sheets in hydrogenated oil-based drilling fluid[J]. graphene oxide and reduced graphene oxide[J]. International Journal
Procedia Engineering, 2016, 148: 49-56. of Hydrogen Energy, 2016, 41(22): 9453-9461.
[13] REN S, PING R, QI Y. Preparations, properties and applications of [32] DU S N, SUN J L, WU P. Preparation, characterization and
graphene in functional devices: A concise review[J]. Ceramics lubrication performances of graphene oxide-TiO 2 nanofluid in rolling
International, 2018, 44(11): 11940-11955. strips[J]. Carbon, 2018, 140: 338-351.
[14] CHEN C, ZHU X Y, CHEN B L. Covalently cross-linked graphene [33] YANG J Z (杨建召), SUN H J (孙红娟), PENG T J (彭同江), et al.
oxide aerogel with stable structure for high-efficiency water Sensitivity and mechanism of graphene oxide with different oxidation
purification[J]. Chemical Engineering Journal, 2018, 354: 896-904. degree[J]. Fine Chemicals (精细化工), 2019, 36(3): 380-386.
[15] WANG S F, WANG C, JI X, et al. Surfactant- and sonication-free [34] MA X J, LI M, LIU X, et al. A graphene oxide nanosheet-modified
exfoliation approach to aqueous graphene dispersion[J]. Materials Ti nanocomposite electrode with enhanced electrochemical property
Letters, 2018, 217: 67-70. and stability for nitrate reduction[J]. Chemical Engineering Journal,
[16] XUAN Y (宣扬), JIANG G C (蒋官澄), LI L (黎凌), et al. 2018, 348: 171-179.
Preparation and evaluation of nano-graphene oxide as a high- [35] XU J F (徐加放), QIU Z S (邱正松), LÜ K H (吕开河). Pressure
performance fluid loss additive[J]. Acta Petrolei Sinica (石油学报), transmission testing technology and simulation equipment for
2013, 34(5): 1010-1016. hydra-mechanics coupling of shale[J]: Acta Petrolei Sinica (石油学
[17] QU J F (曲建峰), QIU Z S (邱正松), GUO B Y (郭保雨), et al. 报), 2005, 26(6): 115-118.