Page 111 - 《精细化工》2020年第6期
P. 111
第 6 期 乔宗梅,等: 微波辅助制备 β-环糊精纳米海绵 ·1177·
表 7 NSCD 的表面特性 epichlorohydrin polymers[J]. European Polymer Journal, 1997, 33(1):
Table 7 Surface properties of the NSCDs [4] 49-57.
CAVALLI R, TROTTA F, TUMIATTI W. Cyclodextrin-based
3
2
样品 比表面积/(m /g) 平均孔径/nm 总孔容/(cm /g) nanosponges for drug delivery[J]. Journal of Inclusion Phenomena
and Macrocyclic Chemistry, 2006, 56(1/2): 209-213.
NSCD4 3.15 110.4 0.122 [5] GHOLIBEGLOO E, MORTEZAZADEH T, SALEHIAN F, et al.
Improved curcumin loading, release, solubility and toxicity by tuning
NSCD7 4.79 63.7 0.235 the molar ratio of cross-linker to beta-cyclodextrin[J]. Carbohydrate
NSCD10 5.52 51.6 0.384 Polymers, 2019, 213: 70-78.
[6] COVIELLO V, SARTINI S, QUATTRINI L, et al. Cyclodextrin-
based nanosponges for the targeted delivery of the anti-restenotic
比表面积和平均孔径的特征表明,NSCD 中均 agent DB103: A novel opportunity for the local therapy of vessels
wall subjected to percutaneous intervention[J]. European Journal of
存在纳米级的孔径;也可以看出随着交联剂用量的 Pharmaceutics & Biopharmaceutics, 2017, 117: 276-285.
[7] PUSHPALATHA R, SELVAMUTHUKUMAR S, KILIMOZHI D.
增加,NSCD 的比表面积和总孔容都逐渐增加,平 Cross-linked, cyclodextrin-based nanosponges for curcumin delivery
均孔径逐渐减小,此结果与 GHOLIBEGLOO 等 [5] physicochemical characterization, drug release, stability and
cytotoxicity[J]. Journal of Drug Delivery Science and Technology,
的研究结果中随交联剂用量的增加,平均孔径减小, 2018, 45: 45-53.
[8] ALONGI J, POSKOVIC M, FRACHE A, et al. Role of β-cyclodextrin
比表面积增大相符。因此,交联剂的用量是控制产 nanosponges in polypropylene photooxidation[J]. Carbohydrate
物比表面积和孔径的关键因素,交联度越高就越有 [9] Polymers, 2011, 86(1): 127-135.
MAMBA B B, KRAUSE R W, MALEFETSE T J, et al. Cyclodextrin
可能形成更多孔的材料。研究者们详细研究了水不 nanosponges in the removal of organic matter to produce water for
power generation[J]. Water SA, 2008, 34(5): 657-660.
溶性的 NSCD 在作为吸附材料方面的应用,并取得 [10] MAMBA B B, KRAUSE R W, MALEFETSE T J, et al.
Monofunctionalized cyclodextrin polymers for the removal of
了较好的成果,文献[9]中对原水中 DOC 的吸附去 organic pollutants from water[J]. Environmental Chemistry Letters,
除能力高达 84%;文献[10-11]中用到的 NSCD 对水 2007, 5(2): 79-84.
[11] MAMBA B B, KRAUSE R W, MALEFETSE T J, et al. Cyclodextrin
中的污染物对硝基苯酚和五氯苯酚的去除率分别在 nanosponges in the removal of organic matter for ultrapure water in
power generation[J]. Journal of Water Supply: Research and Technology-
50%~60%、70%~90%;文献[12]中把 NSCD 作用到 AQUA, 2009, 58(4): 299-304.
[12] EUVRARD E, MORINCRINI N, DRUART C, et al. Cross-linked
分别含有 5 种金属、16 种多环芳烃(PAH)和 3 种 cyclodextrin-based material for treatment of metals and organic
烷基酚(AP)的加标溶液中,结果表明:对溶液中 substances present in industrial discharge waters[J]. Beilstein Journal
of Organic Chemistry, 2016, 12: 1826-1838.
2+
2+
2+
Co 、Ni 和 Zn 去除率高达 99%,PAHs 和 AP 的 [13] ANANDAM S, SELVAMUTHUKUMAR S. Optimization of
microwave-assisted synthesis of cyclodextrin nanosponges using
去除率分别在 65%~82%、69%~90%。 response surface methodology[J]. Journal of Porous Materials, 2014,
21(6): 1015-1023.
3 结论 [14] KUMAR S, POOJA, TROTTA F, et al. Encapsulation of babchi oil in
cyclodextrin-based nanosponges: Physicochemical characterization,
photodegradation, and in vitro cytotoxicity studies[J]. Pharmaceutics,
2018, 10(4): 169.
(1)采用微波辅助法合成 β-环糊精纳米海绵, [15] KOMARNENI S, ROY R. Microwave-hydrothermal synthesis of ceramic
利用响应曲面法建立了统计学模型对反应因素进 powders[J]. Materials Research Bulletin, 1992, 27(12): 1393-1405.
[16] CADDICK S, FITZMAURICE R. Microwave enhanced synthesis[J].
行优化及收率预测,得到最佳工艺条件为:反应时 Tetrahedron, 2009, 65(17): 3325-3355.
[17] NADAGOUDA M N, SPRTH T F, VARMA R S. Microwave-assisted
间 87 min,反应温度 90 ℃,物料物质的量比 1∶ green synthesis of silver nanostructures[J]. Accounts of Chemical
7.75,收率预测为 70.71%。并根据优化条件制备了 Research, 2011, 44(7): 469-478.
[18] LIU J (刘静), SU X X (苏秀霞), CUI M (崔明). Optimization on
3 批样品,得到的平均收率为 68.92%,和预测值非 deodorization of β-cyclodextrin in industrial bone glue by response
surface[J]. Chemical Industry and Engineering Progress (化工进展),
常接近,证明了该优化模型的可靠性。 2017, 36(7): 2615-2020.
(2)与传统水热法相比,微波辅助合成 β-环糊 [19] SWAMINATHAN S, PASTERO L, SERPE L, et al. Cyclodextrin-
based nanosponges encapsulating camptothecin: Physicochemical
精纳米海绵将反应时间由 6.0 h 缩短至 1.5 h 左右, characterization, stability and cytotoxicity[J]. European Journal of
Pharmaceutics and Biopharmaceutics 2010, 74(2): 193-201.
且产物收率由 45%提高到 69%左右,显著提高了合 [20] SHRINGIRISHI M, MAHOR A, GUPTA R, et al. Fabrication and
characterization of nifedipine loaded β-cyclodextrin nanosponges: An
成效率。 in vitro and in vivo evaluation[J]. Journal of Drug Delivery Science
(3)产物的表征结果说明,本文所得的 β-环糊 and Technology, 2017, 41: 344-350.
[21] AHMED R Z, PATIL G, ZAHEER Z. Nanosponges-a completely
精纳米海绵具有较高的热稳定性和较好的结晶度, new nano horizon: Pharmaceutical applications and recent advances [J].
Drug Development and Industrial Pharmacy, 2013, 39(9): 1263-1272.
较大的比表面积和孔容,也为其进一步应用研究奠 [22] TAKAHASHI A, VEIGA F, FERRAZ H. Cyclodextrins inclusion
complexes characterization-part Ⅱ : X-ray diffraction, infrared
定了理论基础。 spectroscopy and nuclear magnetic resonance[J]. International Journal
of Pharmaceutical Sciences Review and Research, 2012, 12(1): 9-15.
参考文献: [23] SINGH V, XU J, WU L, et al. Ordered and disordered cyclodextrin
nanosponges with diverse physicochemical properties[J]. RSC Advances,
[1] TROTTA F, ZANETTI M, CAVALLI R. Cyclodextrin-based nanosponges 2017, 7(38): 23759-23764.
as drug carriers[J]. Beilstein Journal of Organic Chemistry, 2012, 8: [24] STELLENBOOM N, HUNTER R, CAIRA M R, et al. Inclusion of
2091-2099. the allicin mimic S-p-tolyl t-butylthiosulphinate in β-cyclodextrin[J].
[2] SHERJE A P, DRAVYAKAR B R, KADAM D, et al. Cyclodextrin- Supramolecular Chemistry, 2009, 21(7): 611-617.
based nanosponges: A critical review[J]. Carbohydrate Polymers, 2017, [25] MONICA R, AMRITA B, ISHWAR K, et al. In vitro and in vivo
173: 37-49. evaluation of β-cyclodextrin-based nanosponges of telmisartan[J].
[3] RENARD E, DERATANI A, VOLET G, et al. Preparation and Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2013,
characteriztion of water soluble high molecular weight β-cyclodextrin 77(1/2/3/4): 135-145.