Page 60 - 《精细化工》2020年第7期
P. 60
·1342· 精细化工 FINE CHEMICALS 第 37 卷
[20] ZHANG X L, FAN W, L I H, et al. Extending cycling life of carbon composites for lithium-sulfur batteries[J]. Small, 2019,
lithium-oxygen batteries based on novel catalytic nanofiber membrane 15(25): 1901454-1901462.
and controllable screen-printed method[J]. Journal of Materials [38] LIU M M, CAI N, CHAN V, et al. Development and applications of
Chemistry A, 2018, 6(43): 21458-21467. MOFs derivative one-dimensional nanofibers via electrospinning: A
[21] LIANG H X, YAO A N, JIAO X L, et al. Fast and sustained mini-review[J]. Nanomaterials, 2019, 9(9): 1306-1326.
degradation of chemical warfare agent simulants using flexible [39] LI H, ZHU L, ZHANG J Q, et al. High-efficiency separation
self-supported metal-organic framework filters[J]. ACS Applied performance of oil-water emulsions of polyacrylonitrile nanofibrous
Materials & Interfaces, 2018, 10(24): 20396-20403. membrane decorated with metal-organic frameworks[J]. Applied
[22] WEN M C, LI G Y, LIU H L, et al. Metal-organic framework-based Surface Science, 2019, 476: 61-69.
nanomaterials for adsorption and photocatalytic degradation of [40] FARHA O K, ERYAZICI I, JEONG N C, et al. Metal-organic
gaseous pollutants: Recent progress and challenges[J]. framework materials with ultrahigh surface areas: Is the sky the
Environmental Science: Nano, 2019, 6(4): 1006-1025. limit?[J]. Journal of the American Chemical Society, 2012, 134(36):
[23] LEE D T, ZHAO J J, OLDHAM C J, et al. UiO-66-NH 2 metal 15016-15021.
organic framework (MOF) nucleation on TiO 2, ZnO, and Al 2O 3 [41] LIU Y Y, HOWARTH A J, VERMEULEN N A, et al. Catalytic
atomic layer deposition-treated polymer fibers: Role of metal oxide degradation of chemical warfare agents and their simulants by
on MOF growth and catalytic hydrolysis of chemical warfare agent metal-organic frameworks[J]. Coordination Chemistry Reviews,
simulants[J]. ACS Applied Materials & Interfaces, 2017, 9(51): 2017, 346: 101-111.
44847-44855. [42] WANG S L, ZHANG C L, SONG Q H. Selectively instant-response
[24] ZHANG X, ZHANG Q, YUE D, et al. Flexible metal-organic nanofibers with a fluorescent chemosensor toward phosgene in gas
framework-based mixed-matrix membranes: A new platform for H 2S phase[J]. Journal of Materials Chemistry C, 2019, 7(6): 1510-1517.
sensors[J]. Small, 2018, 14(37): 1801563-1801569. [43] LIANG H X, JIAO X L, LI C, et al. Flexible self-supported
[25] ZHANG K, HUO Q, ZHOU Y Y, et al. Textiles/metal-organic metal-organic framework mats with exceptionally high porosity for
frameworks composites as flexible air filters for efficient particulate enhanced separation and catalysis[J]. Journal of Materials Chemistry
matter removal[J]. ACS Applied Materials & Interfaces, 2019, A, 2018, 6(2): 334-341.
11(19): 17368-17374. [44] ZHANG X L, ZHAO S Y, FAN W, et al. Long cycling, thermal
[26] GIANNAKOUDAKIS D A, HU Y P, FLORENT M, et al. Smart stable, dendrites free gel polymer electrolyte for flexible lithium
textiles of MOF/g-C 3N 4 nanospheres for the rapid metal batteries[J]. Electrochimica Acta, 2019, 301: 304-311.
detection/detoxification of chemical warfare agents[J]. Nanoscale [45] XUE J J, WU T, DAI Y Q, et al. Electrospinning and electrospun
Horizons, 2017, 2(6): 356-364. nanofibers: Methods, materials, and applications[J]. Chemical Reviews,
[27] WANG H, WAGNER G W, LU A X, et al. Photocatalytic oxidation 2019, 119(8): 5298-5415.
of sulfur mustard and its simulant on BODIPY-incorporated polymer [46] JI D X, FAN L, LI L L, et al. Hierarchical catalytic electrodes of
coatings and fabrics[J]. ACS Applied Materials & Interfaces, 2018, cobalt-embedded carbon nanotubeicarbon flakes arrays for flexible
10(22): 18771-18777. solid-state zinc-air batteries[J]. Carbon, 2019, 142: 379-387.
[28] ZHANG H, ZHAO W Q, ZOU M C, et al. 3D, mutually embedded [47] HAO Z M, WU J T, WANG C L, et al. Electrospun polyimide/metal-
mof@carbon nanotube hybrid networks for high-performance organic framework nanofibrous membrane with superior thermal
lithium-sulfur batteries[J]. Advanced Energy Materials, 2018, 8: stability for efficient PM 2.5 capture[J]. ACS Applied Materials &
1800013-1800023. Interfaces, 2019, 11(12): 11904-11909.
[29] MUNTHA S T, KAUSAR A, SIDDIQ M. A review featuring [48] LI T T, LIU L, GAO M L, et al. A highly stable nanofibrous Eu-MOF
fabrication, properties, and application of polymeric mixed matrix membrane as a convenient fluorescent test paper for rapid and cyclic
membrane reinforced with different fillers[J]. Polymer-Plastics detection of nitrobenzene[J]. Chemical Communications, 2019,
Technology and Engineering, 2017, 56(18): 2043-2064. 55(34): 4941-4944.
[30] WONG K K, JAWAD Z A. A review and future prospect of polymer [49] LEI C, GAO J K, REN W J, et al. Fabrication of metal-organic
blend mixed matrix membrane for CO 2 separation[J]. Journal of frameworks@cellulose aerogels composite materials for removal of
Polymer Research, 2019, 26(12): 289-306. heavy metal ions in water[J]. Carbohydrate Polymers, 2019, 205:
[31] DLAMINI D S, LI J X, MAMBA B B. Critical review of 35-41.
montmorillonite/polymer mixed-matrix filtration membranes: [50] MA X T, LOU Y, CHEN X B, et al. Multifunctional flexible
Possibilities and challenges[J]. Applied Clay Science, 2019, 168: composite aerogels constructed through in-situ growth of
21-30. metal-organic framework nanoparticles on bacterial cellulose[J].
[32] ELRASHEEDY A, NADY N, BASSYOUNI M, et al. Metal organic Chemical Engineering Journal, 2019, 356: 227-235.
framework based polymer mixed matrix membranes: Review on [51] ZHU H, YANG X, CRANSTON E D, et al. Flexible and porous
applications in water purification[J]. Membranes, 2019, 9(7): 88-118. nanocellulose aerogels with high loadings of metal-organic-framework
[33] LI Q Y, LI Y A, GUAN Q, et al. UiO-68-PT MOF-based sensor and particles for separations applications[J]. Advanced Materials, 2016,
its mixed matrix membrane for detection of HClO in water[J]. 28(35): 7652-7657.
Inorganic Chemistry, 2019, 58(15): 9890-9896. [52] WANG Z G, SONG L, WANG Y Q, et al. Lightweight UiO-66/
[34] PETERSON G W, LU A X, HALL M G, et al. MOFwich: cellulose aerogels constructed through self-crosslinking strategy for
Sandwiched metal-organic framework-containing mixed matrix adsorption applications[J]. Chemical Engineering Journal, 2019, 371:
composites for chemical warfare agent removal[J]. ACS Applied 138-144.
Materials & Interfaces, 2018, 10(8): 6820-6824. [53] HAMEDI M, KARABULUT E, MARAIS A, et al. Nanocellulose
[35] WANG H, ZHAO S, LIU Y, et al. Membrane adsorbers with aerogels functionalized by rapid layer-by-layer assembly for high
ultrahigh metal-organic framework loading for high flux charge storage and beyond[J]. Angewandte Chemie International
separations[J]. Nature Communications, 2019, 10(1): 4204-4212. Edition, 2013, 52(46): 12038-12042.
[36] CHEN Y F, LI S Q, PEI X K, et al. A solvent-free hot-pressing [54] ZHAO Z, ZHANG Z W, ZHAO Y T, et al. Atomic layer deposition
method for preparing metal-organic-framework coatings[J]. Angewandte inducing integration of Co, N codoped carbon sphere on 3D foam
Chemie International Edition, 2016, 55(10): 3419-3423. with hierarchically porous structures for flexible hydrogen producing
[37] XIAO K K, WANG J, CHEN Z, et al. Improving polysulfides device[J]. Advanced Functional Materials, 2019, 29(48): 1906365-
adsorption and redox kinetics by the Co 4N nanoparticle/N-doped 1906373.