Page 47 - 《精细化工》2020年第9期
P. 47
第 9 期 戴远哲,等: 多孔载体基水合盐相变材料热物性研究进展 ·1761·
Renewable and Sustainable Energy Reviews, 2014, 40: 237-259. composite phase change energy storage materials[J]. Journal of
[10] ZHANG X X (张新星). Study on the preparation and properties of Molecular Liquids, 2019, 280: 360-366.
the composite phase change materials of inorganic hydrated salts[D]. [28] LI G, ZHANG B B, LI X, et al. The preparation, characterization and
Xining: University of Chinese Academy of Sciences (中国科学院大 modification of a new phase change material: CaCl 2•6H 2O-
学), 2018. MgCl 2•6H 2O eutectic hydrate salt[J]. Solar Energy Materials and
[11] LIU J W, WANG Q H, LING Z Y, et al. A novel process for Solar Cells, 2014, 126: 51-55.
preparing molten salt/expanded graphite composite phase change [29] MAO J F, DONG X, HOU P M, et al. Preparation research of novel
blocks with good uniformity and small volume expansion[J]. Solar composite phase change materials based on sodium acetate trihydrate[J].
Energy Materials and Solar Cells, 2017, 169: 280-286. Applied Thermal Engineering, 2017, 118: 817-825.
[12] CHEN X, WU Y T, ZHANG L D, et al. Experimental study on [30] SCHMIT H, RUDALEVICIENE D, RATHGEBER C, et al.
thermophysical properties of molten salt nanofluids prepared by Influence of basic raw materials on the maximum storage capacity of
high-temperature melting[J]. Solar Energy Materials and Solar Cells, the phase change material calcium chloride hexahydrate[J]. Journal
2019, 191: 209-217. of Energy Storage, 2020, 27: 101064.
[13] RAADE J W, PADOWITZ D. Development of molten salt heat [31] LI X, ZHOU Y, NIAN H E, et al. Preparation and thermal energy
transfer fluid with low melting point and high thermal stability[J]. storage studies of CH 3COONa•3H 2O-KCl composites salt system
Journal of Solar Energy Engineering, 2011, 133(3): 91-96. with enhanced phase change performance[J]. Applied Thermal
[14] XU F, WANG J T, ZHU X M, et al. Thermodynamic modeling and Engineering, 2016, 102: 708-715.
experimental verification of a NaNO 3-KNO 3-LiNO 3-Ca(NO 3) 2 system [32] YANG R, XU H, ZHANG Y P. Preparation physical property and
for solar thermal energy storage[J]. New Journal of Chemistry, 2017, thermal physical property of phase change microcapsule slurry and
41(18): 10376-10382. phase change emulsion[J]. Solar Energy Materials and Solar Cells,
[15] MANTHA D, WANG T, REDDY R G. Thermodynamic modeling of 2003, 80(4): 405-416.
eutectic point in the LiNO 3-NaNO 3-KNO 3 ternary system[J]. Journal [33] WANG F (王芳), ZHENG M Y (郑茂余), LI Z J (李忠建), et al.
of Phase Equilibria & Diffusion, 2012, 33(2): 110-114. Application of phase change material in solar assisted ground-source
[16] LIU Y S, YANG Y Z. Preparation and thermal properties of heat pump system[J]. Acta Energiae Solaris Sinica (太阳能学报),
Na 2CO 3•10H 2O-Na 2HPO 4•12H 2O eutectic hydrate salt as a novel 2007, 27(12): 1231-1234.
phase change material for energy storage[J]. Applied Thermal [34] HUANG H N, BI H, ZHOU M, et al. A three-dimensional elastic
Engineering, 2017, 112: 606-609. macroscopic graphene network for thermal management application[J].
[17] KUMAR N, BANERJEE D, JR R C. Exploring additives for Journal of Materials Chemistry A, 2014, 2: 18215-18218.
improving the reliability of zinc nitrate hexahydrate as a phase [35] SUNDARARAJAN S, SAMUI A B, KULKARNI P S. Versatility of
change material (PCM)[J]. J Energ Storage, 2018, 20: 153-162. polyethylene glycol (PEG) in designing solid-solid phase change
[18] LI Y, LIN H, HEJAZI S M A S, et al. The effect of low temperature materials (PCMs) for thermal management and their application to
phase change material of hydrated salt on the performance of innovative technologies[J]. Journal of Materials Chemistry A, 2017,
magnesium phosphate cement[J]. Construction and Building 5: 18379-18396.
Materials, 2017, 149: 272-278. [36] LI Y Q, SAMAD Y A, POLYCHRONOPOULOU K, et al. From
[19] PILAR R, SVOBODA L, HONCOVA P, et al. Study of magnesium biomass to high performance solar-thermal and electric-thermal
chloride hexahydrate as heat storage material[J]. Thermochimica energy conversion and storage materials[J]. Journal of Materials
Acta, 2012, 546: 81-86. Chemistry A, 2014, 2: 7759-7765.
[20] XIE N, LUO J M, LI Z P, et al. Salt hydrate/expanded vermiculite [37] CHEN X, GAO H Y, YANG M, et al. Smart integration of carbon
composite as a form-stable phase change material for building energy quantum dots in metal-organic frameworks for fluorescence-
storage[J]. Solar Energy Materials and Solar Cells, 2019, 189: 33-42. functionalized phase change materials[J]. Energy Storage Materials,
[21] SALYAN S, SURESH S. Liquid metal gallium laden organic phase 2019, 18: 349-355.
change material for energy storage: An experimental study[J]. [38] XIA Y P, CUI W W, ZHANG H Z, et al. Synthesis of three-
International Journal of Hydrogen Energy, 2018, 43(4): 2469-2483. dimensional graphene aerogel encapsulated n-octadecane for
[22] ZHOU W Y, WU L C, ZHOU X L, et al. High thermal stability and enhancing phase-change behavior and thermal conductivity[J].
low density variation of carbon-doped Ge 2Sb 2Te 5 for phase-change Journal of Materials Chemistry A, 2017, 5: 15191-15199.
[39] YE S B, ZHANG Q L, HU D D, et al. Core-shell-like structured
memory application[J]. Applied Physics Letters, 2014, 105(24):
graphene aerogel encapsulating paraffin: Shape-stable phase change
243113.
material for thermal energy storage[J]. Journal of Materials Chemistry
[23] LIU R R, ZHOU X, ZHAI J W, et al. Multilayer SnSb 4-SbSe thin
A, 2015, 3: 4018-4025.
films for phase change materials possessing ultrafast phase change
speed and enhanced stability[J]. Acs Applied Materials & Interfaces, [40] YANG J, TANG L S, BAO R Y, et al. An ice-templated assembly
2017, 9(32): 27004-27013. strategy to construct graphene oxide/boron nitride hybrid porous
[24] BUONOMO B, ERCOLE D, MANCA O, et al. Thermal cooling scaffolds in phase change materials with enhanced thermal conductivity
behaviors of lithium-ion batteries by metal foam with phase change and shape stability for light-thermal-electric energy conversion[J].
materials[R]. Energy Procedia, 2018, 148: 1175-1182. Journal of Materials Chemistry A, 2016, 4: 18841-18851.
[25] FERNANDEZ A I, BARRENECHE C, BELUSKO M, et al. [41] YANG J, LI X F, HAN S, et al. High-quality graphene aerogels for
thermally conductive phase change composites with excellent shape
Considerations for the use of metal alloys as phase change materials
stability[J]. Journal of Materials Chemistry A, 2018, 6: 5880-5886.
for high temperature applications[J]. Solar Energy Materials and
[42] CHEN X, GAO H Y, YANG M, et al. Highly graphitized 3D
Solar Cells, 2017, 171: 275-281.
network carbon for shape-stabilized composite PCMs with superior
[26] MOHAMED S A, AL-SULAIMAN F A, IBRAHIM N I, et al. A thermal energy harvesting[J]. Nano Energy, 2018, 49: 86-94.
review on current status and challenges of inorganic phase change [43] LI G Y, ZHANG X T, WANG J, et al. From anisotropic graphene
materials for thermal energy storage systems[J]. Renewable and aerogels to electron- and photo-driven phase change composites[J].
Sustainable Energy Reviews, 2017, 70: 1072-1089. Journal of Materials Chemistry A, 2016, 4: 17042-17049.
[27] ZHANG Y Y C, ZHANG X L, XU X F, et al. Preparation and
characterization of sodium sulfate pentahydrate/sodium pyrophosphate (下转第 1824 页)