Page 47 - 《精细化工》2020年第9期
P. 47

第 9 期                     戴远哲,等:  多孔载体基水合盐相变材料热物性研究进展                                   ·1761·


                 Renewable and Sustainable Energy Reviews, 2014, 40: 237-259.     composite phase change energy storage  materials[J]. Journal of
            [10]  ZHANG X X (张新星). Study on the preparation and properties of   Molecular Liquids, 2019, 280: 360-366.
                 the composite phase change materials of inorganic hydrated salts[D].   [28]  LI G, ZHANG B B, LI X, et al. The preparation, characterization and
                 Xining: University of Chinese Academy of Sciences (中国科学院大  modification of a new phase  change material: CaCl 2•6H 2O-
                 学), 2018.                                         MgCl 2•6H 2O eutectic hydrate salt[J]. Solar Energy Materials and
            [11]  LIU J W, WANG Q H, LING Z Y,  et al. A novel process for   Solar Cells, 2014, 126: 51-55.
                 preparing molten salt/expanded  graphite composite phase change   [29]  MAO J F, DONG X, HOU P M, et al. Preparation research of novel
                 blocks with good uniformity and small volume expansion[J]. Solar   composite phase change materials based on sodium acetate trihydrate[J].
                 Energy Materials and Solar Cells, 2017, 169: 280-286.     Applied Thermal Engineering, 2017, 118: 817-825.
            [12]  CHEN  X, WU Y  T, ZHANG  L D,  et al. Experimental study on   [30]  SCHMIT H,  RUDALEVICIENE D, RATHGEBER  C,  et al.
                 thermophysical properties of molten  salt nanofluids prepared by   Influence of basic raw materials on the maximum storage capacity of
                 high-temperature melting[J]. Solar Energy Materials and Solar Cells,   the phase change material calcium chloride hexahydrate[J]. Journal
                 2019, 191: 209-217.                               of Energy Storage, 2020, 27: 101064.
            [13]  RAADE J W, PADOWITZ  D.  Development of molten salt heat   [31]  LI X, ZHOU Y, NIAN H E, et al. Preparation and thermal energy
                 transfer fluid with  low melting point and high thermal stability[J].   storage studies of  CH 3COONa•3H 2O-KCl composites  salt system
                 Journal of Solar Energy Engineering, 2011, 133(3): 91-96.     with enhanced phase change performance[J]. Applied Thermal
            [14]  XU F, WANG J T, ZHU X M, et al. Thermodynamic modeling and   Engineering, 2016, 102: 708-715.
                 experimental verification of a NaNO 3-KNO 3-LiNO 3-Ca(NO 3) 2 system   [32]  YANG R, XU H, ZHANG Y P. Preparation physical property and
                 for solar thermal energy storage[J]. New Journal of Chemistry, 2017,   thermal physical property of phase change microcapsule slurry and
                 41(18): 10376-10382.                              phase change emulsion[J]. Solar Energy Materials and Solar Cells,
            [15]  MANTHA D, WANG T, REDDY R G. Thermodynamic modeling of   2003, 80(4): 405-416.
                 eutectic point in the LiNO 3-NaNO 3-KNO 3 ternary system[J]. Journal   [33]  WANG F (王芳), ZHENG M Y (郑茂余), LI Z J (李忠建),  et al.
                 of Phase Equilibria & Diffusion, 2012, 33(2): 110-114.     Application of phase change material in solar assisted ground-source
            [16]  LIU Y S, YANG Y Z. Preparation and thermal properties of   heat pump system[J]. Acta Energiae  Solaris Sinica (太阳能学报),
                 Na 2CO 3•10H 2O-Na 2HPO 4•12H 2O eutectic hydrate salt as a novel   2007, 27(12): 1231-1234.
                 phase change  material for energy storage[J]. Applied Thermal   [34]  HUANG H  N, BI H, ZHOU M,  et al. A three-dimensional elastic
                 Engineering, 2017, 112: 606-609.                  macroscopic graphene network for thermal management application[J].
            [17]  KUMAR  N, BANERJEE D, JR R  C. Exploring additives for   Journal of Materials Chemistry A, 2014, 2: 18215-18218.
                 improving the reliability of zinc nitrate hexahydrate  as a phase   [35]  SUNDARARAJAN S, SAMUI A B, KULKARNI P S. Versatility of
                 change material (PCM)[J]. J Energ Storage, 2018, 20: 153-162.     polyethylene glycol (PEG) in designing solid-solid  phase change
            [18]  LI Y, LIN H, HEJAZI S M A S, et al. The effect of low temperature   materials (PCMs)  for thermal  management and their application  to
                 phase change material of hydrated  salt on the performance of   innovative technologies[J]. Journal of Materials Chemistry A, 2017,
                 magnesium phosphate cement[J].  Construction and Building   5: 18379-18396.
                 Materials, 2017, 149: 272-278.                [36]  LI Y Q, SAMAD  Y A, POLYCHRONOPOULOU K,  et al. From
            [19]  PILAR R, SVOBODA L, HONCOVA P, et al. Study of magnesium   biomass to high  performance solar-thermal  and electric-thermal
                 chloride hexahydrate as heat storage material[J]. Thermochimica   energy conversion and storage materials[J]. Journal of Materials
                 Acta, 2012, 546: 81-86.                           Chemistry A, 2014, 2: 7759-7765.
            [20]  XIE N, LUO J M, LI Z P, et al. Salt hydrate/expanded vermiculite   [37]  CHEN X, GAO H Y, YANG M, et al. Smart integration of carbon
                 composite as a form-stable phase change material for building energy   quantum dots in metal-organic frameworks for fluorescence-
                 storage[J]. Solar Energy Materials and Solar Cells, 2019, 189: 33-42.     functionalized phase change materials[J]. Energy Storage Materials,
            [21]  SALYAN S, SURESH S. Liquid metal gallium laden organic phase   2019, 18: 349-355.
                 change  material for energy storage: An experimental study[J].   [38]  XIA Y P, CUI W W,  ZHANG H Z,  et al. Synthesis of three-
                 International Journal of Hydrogen Energy, 2018, 43(4): 2469-2483.     dimensional graphene aerogel encapsulated  n-octadecane for
            [22]  ZHOU W Y, WU L C, ZHOU X L, et al. High thermal stability and   enhancing phase-change behavior and thermal conductivity[J].
                 low density variation of carbon-doped Ge 2Sb 2Te 5 for phase-change   Journal of Materials Chemistry A, 2017, 5: 15191-15199.
                                                               [39]  YE S  B,  ZHANG  Q L, HU D D,  et al. Core-shell-like structured
                 memory application[J]. Applied Physics Letters, 2014, 105(24):
                                                                   graphene aerogel encapsulating paraffin: Shape-stable phase change
                 243113.
                                                                   material for thermal energy storage[J]. Journal of Materials Chemistry
            [23]  LIU R R, ZHOU X, ZHAI J W, et al. Multilayer SnSb 4-SbSe thin
                                                                   A, 2015, 3: 4018-4025.
                 films for phase change materials possessing  ultrafast phase change
                 speed and enhanced stability[J]. Acs Applied Materials & Interfaces,   [40]  YANG J, TANG L S, BAO R Y, et al. An ice-templated assembly
                 2017, 9(32): 27004-27013.                         strategy to construct graphene oxide/boron  nitride hybrid porous
            [24]  BUONOMO  B,  ERCOLE D, MANCA O,  et al. Thermal  cooling   scaffolds in phase change materials with enhanced thermal conductivity
                 behaviors of lithium-ion batteries by metal foam with phase change   and shape stability for light-thermal-electric energy conversion[J].
                 materials[R]. Energy Procedia, 2018, 148: 1175-1182.     Journal of Materials Chemistry A, 2016, 4: 18841-18851.
            [25]  FERNANDEZ A  I, BARRENECHE C, BELUSKO  M,  et al.   [41]  YANG J, LI X F, HAN S, et al. High-quality graphene aerogels for
                                                                   thermally conductive phase change composites with excellent shape
                 Considerations for the use of metal alloys as phase change materials
                                                                   stability[J]. Journal of Materials Chemistry A, 2018, 6: 5880-5886.
                 for high temperature applications[J]. Solar Energy Materials and
                                                               [42]  CHEN  X, GAO  H Y, YANG M,  et al. Highly graphitized 3D
                 Solar Cells, 2017, 171: 275-281.
                                                                   network carbon for shape-stabilized composite PCMs with superior
            [26]  MOHAMED S A,  AL-SULAIMAN F A, IBRAHIM  N I,  et al. A   thermal energy harvesting[J]. Nano Energy, 2018, 49: 86-94.
                 review on current status and challenges of inorganic phase change   [43]  LI G Y, ZHANG X T, WANG J, et al. From anisotropic graphene
                 materials for thermal energy storage systems[J]. Renewable and   aerogels to electron- and photo-driven phase change composites[J].
                 Sustainable Energy Reviews, 2017, 70: 1072-1089.     Journal of Materials Chemistry A, 2016, 4: 17042-17049.
            [27]  ZHANG Y Y C,  ZHANG X L, XU X F,  et al. Preparation and
                 characterization of sodium sulfate pentahydrate/sodium pyrophosphate        (下转第 1824 页)
   42   43   44   45   46   47   48   49   50   51   52