Page 53 - 《精细化工》2021年第1期
P. 53

第 1 期                            张新星,等: PET 共聚阻燃改性研究进展                                    ·43·


                 degradation of flame retardant copolyesters containing  phosphorus   [39]  LI J W (李建武), WANG C S (王朝生), JIANG Z L (江振林), et al.
                 linked pendent groups[J]. Polymer Degradation and Stability, 2003,   Effect of azo initiators on structure and thermal stabilization behavior
                 80(1): 135-140.                                   of PAN and its precursor[J]. China Synthetic Fiber Industry (合成纤
            [26]  HUAGN Y L (黄意龙), GONG J H (龚静华), YANG S G (杨曙光),   维工业), 2017, 40(3): 6-10.
                 et al. Structure and properties of phosphorus flame retardant   [40]  JING X K,  WANG X S, GUO D  M,  et al. The high-temperature
                 copolyester[J]. Journal of Functional  Polymers (功能高分子学报),   self-crosslinking contribution of azobenzene groups to  the flame
                 2012, 25(4): 410-416.                             retardance and anti-dripping of copolyesters[J]. Journal of Materials
            [27]  WANG L S, WANG X L, YAN G L. Synthesis, characterisation and   Chemistry A, 2013, 1(32): 9264-9272.
                 flame retardance behaviour of poly(ethylene terephthalate) copolymer   [41]  ZHAO H B, LIU B W, WANG X L, et al. A flame-retardant-free and
                 containing  triaryl  phosphine oxide[J]. Polymer Degradation and   thermo-cross-linkable copolyester: Flame-retardant and anti-dripping
                 Stability, 2000, 69(1): 127-130.                  mode of action[J]. Polymer, 2014, 55(10): 2394-2403.
            [28]  XU H H (徐焕辉), TAN Y F (覃迎峰), PENG R (彭锐). Synthesis   [42]  WU J N, CHEN L, FU T, et al. New application for aromatic Schiff
                 and characterization of  flame retardant  polyester copolymer[J].  China   base: High efficient flame-retardant and anti-dripping action for
                 Plastics Industry (中国塑料), 2012, 40(11): 13-15.    polyesters[J]. Chemical Engineering Journal, 2018, 336: 622-632.
            [29]  LIN C H, HUANG C M,  WANG  M  W,  et al. Synthesis of a   [43]  WU J N, QIN  Z  H, CHEN  L,  et al. Tailoring  Schiff base cross-
                 phosphinated acetoxybenzoic acid and its application in enhancing T g   linking by cyano group toward excellent flame retardancy, anti-dripping
                 and flame retardancy of poly (ethylene terephthalate)[J]. Journal of   and smoke suppression of PET[J]. Polymer, 2018, 153: 78-85.
                 Polymer Science Part A: Polymer Chemistry, 2014, 52(3): 424-434.   [44]  ZHAO H B, CHEN L, YANG J C, et al. A novel flame-retardant-free
            [30]  WEI X M (魏雪梅), ZHU Z G (朱志国), LIU P P (刘培培), et al.   copolyester: Cross-Linking towards self extinguishing and non-dripping[J].
                 Studies  on  preparation of flame-retardant ploy (ethylene  terephthalate)   Journal of Materials Chemistry, 2012, 22(37): 19849-19857.
                 and its structures and properties[J]. Journal of Textile Research (纺织  [45]  DONG X, CHEN L, DUAN R T, et al. Phenylmaleimide-containing
                 学报), 2008, (8): 42-45.                            PET-based copolyester: Cross-Linking from 2+ cycloaddition
            [31]  LI J, ZHU H F,  LI J,  et al.  Thermal degradation behaviors of   toward flame retardance and anti-dripping[J]. Polymer  Chemistry,
                 phosphorus-silicon synergistic flame-retardant copolyester[J]. Journal of   2016, 7(15): 2698-2708.
                 Applied Polymer Science, 2011, 122(3): 1993-2003.   [46]  DONG X, DUAN R T, NI Y P, et al. Fire behavior of novel imidized
            [32]  WANG P (王鹏), WANG R (王锐), ZHU Z G (朱志国). Preparation   norbornene-containing poly (ethylene terephthalate) copolymers:
                 and  characterization  of flame-retardant anti-dripping PET[J].  Synthetic   Influence of retro-Diels-Alder  reaction at high  temperature[J].
                 Fiber in China (合成纤维), 2015, 38(2): 32-35.        Polymer Degradation and Stability, 2017, 146: 105-112.
            [33] HUANG L (黄璐), WANG C S (王朝生), WANG C Y (王春雨),   [47]  GUO D M, FU  T,  RUAN C,  et al.  A new approach to improving
                 et al. Preparation and structural properties of flame retardant PET   flame retardancy, smoke suppression and anti-dripping of PET: Via
                 containing phosphorus and silicon[J]. China Synthetic Fiber Industry   arylene-ether units  rearrangement reactions at high  temperature[J].
                 (合成纤维工业), 2016, 39(2): 39-43.                     Polymer, 2015, 77: 21-31.
            [34]  WANG M (马萌), ZHU Z  G  (朱志国), WEI L F (魏丽菲),  et al.   [48]  WU Z Z, NI Y P, FU T, et al. Effect of biphenyl biimide structure on
                 Preparation and properties of phosphorus flame retardant /zinc borate   the thermal stability, flame retardancy and pyrolysis behavior of
                 composite flame-retardant PET[J]. China Synthetic Fiber Industry   PET[J]. Polymer Degradation and Stability, 2018, 155: 162-172.
                 (合成纤维工业), 2016, 39(3): 21-25.                 [49]  LIU B W, CHEN L, GUO D M, et al. Fire-safe polyesters enabled by
            [35]  LIU H M, WANG R, XU X. Static and dynamic  mechanical   end-group capturing chemistry[J]. Angew Chem Int Ed, 2019,
                 properties of flame-retardant copolyester/nano-ZnCO 3 composites[J].   58(27): 9188-9193.
                 Journal of Applied Polymer Science, 2011, 121(6): 3131-3136.   [50]  ZHANG Y, CHEN L, ZHAO J J, et al. A phosphorus-containing PET
            [36]  GE X G, WANG D Y, WANG C, et al. A novel phosphorus-containing   ionomer: From ionic aggregates to flame retardance and  restricted
                 copolyester/montmorillonite nanocomposites with improved flame   melt-dripping[J]. Polymer Chemistry, 2014, 5(6): 1982-1991.
                 retardancy[J]. European Polymer Journal, 2007, 43(7): 2882-2890.   [51]  ZHANG Y, NI  Y P, HE M X,  et al. Phosphorus-containing
            [37]  FENG X X, LIU M J, ZHANG J C. Study on the preparation and   copolyesters: The effect of ionic group and its analogous phosphorus
                 properties of the phosphorus-containing flame retardant PET   heterocycles on their flame-retardant and anti-dripping performances[J].
                 copolymer[J]. Advanced Materials Research,2013, 652/653/654: 410-413.   Polymer, 2015, 60: 50-61.
            [38]  GAO J W (高建伟), WANG R (王锐), DONG Z F (董振峰), et al.   [52]  GE X G, WANG C, HU Z,  et al. Phosphorus-containing telechelic
                 Preparation and properties  of PET with synergistic flame retardant   polyester-based ionomer: Facile synthesis and antidripping effects[J].
                 containing phosphorus and fluoride[J]. Journal of Beijing Institute of   Journal of Polymer Science Part A: Polymer Chemistry, 2008, 46(9):
                 Clothing Technology (北京服装学院学报), 2019, 39(2): 1-9.     2994-3006.


            (上接第 33 页)                                             2143-2146.
                                                               [62]  YUAN Z L, WANG H Y, MU X, et al. Highly selective Pd-catalyzed
            [57]  CHEN B, FANG  C C, LIU P.  Rhodium-catalyzed enantioselective   intermolecular fluorosulfonylation of styrenes[J]. Journal of the
                 radical addition of CX 4 reagents to olefins[J]. Angewandte Chemie   American Chemical Society, 2015, 137(7): 2468-2471.
                 International Edition, 2017, 56(30): 8780-8784.     [63]  ZHENG F, MIN  Q Q, ZHANG X  G,  et al. Palladium-catalyzed
            [58]  ZHANG Y  Y, CHEN C,  ZHAO J H,  et al. Rhodium-catalyzed   heck-type difluoroalkylation of alkenes with functionalized
                 cascade radical cyclization  of  1, 6-enynes with Br-CX 3: Access  to   difluoromethyl bromides[J]. Synthesis, 2015, 47(19): 2912-2923.
                 bromine-containing trihalomethylated pyrrolidines[J]. Asian Journal   [64]  ZHANG F, XIAO  Y L, ZHANG  X  G,  et al. Palladium-catalyzed
                 of Organic Chemistry, 2019, 8(12): 2249-2256.     phosphonyldifluoromethylation of alkenes with  bromodifluoro-
            [59]  OHKUMA T, OOKA H, IKARIYA T, et al. Preferential hydrogenation   methylphosphonate[J]. Organic Chemistry Frontiers, 2016, 3(4): 466-
                 of aldehydes and ketones[J]. Journal of the American Chemical   469.
                 Society, 1995, 117(41): 10417-10418.          [65]  LIAO J H, FAN L F, GUO W,  et al. Palladium-catalyzed
            [60]  JONES J H. The  CativaTM process for the manufacture of acetic   fluoroalkylative cyclization of  olefins[J]. Organic Letters, 2017,
                 acid[J]. Platinum Metals Review, 2000, 44(3): 94-105.     19(5): 1008-1011.
            [61]  TSUN J, HARA M, OHNO K. Organic synthesis by means of noble   [66]  HAYASHI T.  Axially chiral  monophosphine ligands (MOPs) and
                 metal complexes-XCIV: Palladium catalyzed hydrosilylation  of   their use for palladium-catalyzed asymmetric hydrosilylation of
                 monoenes and conjugated dienes[J]. Tetrahedron, 1974, 30(24):   olefins[J]. Catalysis Today, 2000, 62(1): 3-15.
   48   49   50   51   52   53   54   55   56   57   58