Page 53 - 《精细化工》2021年第1期
P. 53
第 1 期 张新星,等: PET 共聚阻燃改性研究进展 ·43·
degradation of flame retardant copolyesters containing phosphorus [39] LI J W (李建武), WANG C S (王朝生), JIANG Z L (江振林), et al.
linked pendent groups[J]. Polymer Degradation and Stability, 2003, Effect of azo initiators on structure and thermal stabilization behavior
80(1): 135-140. of PAN and its precursor[J]. China Synthetic Fiber Industry (合成纤
[26] HUAGN Y L (黄意龙), GONG J H (龚静华), YANG S G (杨曙光), 维工业), 2017, 40(3): 6-10.
et al. Structure and properties of phosphorus flame retardant [40] JING X K, WANG X S, GUO D M, et al. The high-temperature
copolyester[J]. Journal of Functional Polymers (功能高分子学报), self-crosslinking contribution of azobenzene groups to the flame
2012, 25(4): 410-416. retardance and anti-dripping of copolyesters[J]. Journal of Materials
[27] WANG L S, WANG X L, YAN G L. Synthesis, characterisation and Chemistry A, 2013, 1(32): 9264-9272.
flame retardance behaviour of poly(ethylene terephthalate) copolymer [41] ZHAO H B, LIU B W, WANG X L, et al. A flame-retardant-free and
containing triaryl phosphine oxide[J]. Polymer Degradation and thermo-cross-linkable copolyester: Flame-retardant and anti-dripping
Stability, 2000, 69(1): 127-130. mode of action[J]. Polymer, 2014, 55(10): 2394-2403.
[28] XU H H (徐焕辉), TAN Y F (覃迎峰), PENG R (彭锐). Synthesis [42] WU J N, CHEN L, FU T, et al. New application for aromatic Schiff
and characterization of flame retardant polyester copolymer[J]. China base: High efficient flame-retardant and anti-dripping action for
Plastics Industry (中国塑料), 2012, 40(11): 13-15. polyesters[J]. Chemical Engineering Journal, 2018, 336: 622-632.
[29] LIN C H, HUANG C M, WANG M W, et al. Synthesis of a [43] WU J N, QIN Z H, CHEN L, et al. Tailoring Schiff base cross-
phosphinated acetoxybenzoic acid and its application in enhancing T g linking by cyano group toward excellent flame retardancy, anti-dripping
and flame retardancy of poly (ethylene terephthalate)[J]. Journal of and smoke suppression of PET[J]. Polymer, 2018, 153: 78-85.
Polymer Science Part A: Polymer Chemistry, 2014, 52(3): 424-434. [44] ZHAO H B, CHEN L, YANG J C, et al. A novel flame-retardant-free
[30] WEI X M (魏雪梅), ZHU Z G (朱志国), LIU P P (刘培培), et al. copolyester: Cross-Linking towards self extinguishing and non-dripping[J].
Studies on preparation of flame-retardant ploy (ethylene terephthalate) Journal of Materials Chemistry, 2012, 22(37): 19849-19857.
and its structures and properties[J]. Journal of Textile Research (纺织 [45] DONG X, CHEN L, DUAN R T, et al. Phenylmaleimide-containing
学报), 2008, (8): 42-45. PET-based copolyester: Cross-Linking from 2+ cycloaddition
[31] LI J, ZHU H F, LI J, et al. Thermal degradation behaviors of toward flame retardance and anti-dripping[J]. Polymer Chemistry,
phosphorus-silicon synergistic flame-retardant copolyester[J]. Journal of 2016, 7(15): 2698-2708.
Applied Polymer Science, 2011, 122(3): 1993-2003. [46] DONG X, DUAN R T, NI Y P, et al. Fire behavior of novel imidized
[32] WANG P (王鹏), WANG R (王锐), ZHU Z G (朱志国). Preparation norbornene-containing poly (ethylene terephthalate) copolymers:
and characterization of flame-retardant anti-dripping PET[J]. Synthetic Influence of retro-Diels-Alder reaction at high temperature[J].
Fiber in China (合成纤维), 2015, 38(2): 32-35. Polymer Degradation and Stability, 2017, 146: 105-112.
[33] HUANG L (黄璐), WANG C S (王朝生), WANG C Y (王春雨), [47] GUO D M, FU T, RUAN C, et al. A new approach to improving
et al. Preparation and structural properties of flame retardant PET flame retardancy, smoke suppression and anti-dripping of PET: Via
containing phosphorus and silicon[J]. China Synthetic Fiber Industry arylene-ether units rearrangement reactions at high temperature[J].
(合成纤维工业), 2016, 39(2): 39-43. Polymer, 2015, 77: 21-31.
[34] WANG M (马萌), ZHU Z G (朱志国), WEI L F (魏丽菲), et al. [48] WU Z Z, NI Y P, FU T, et al. Effect of biphenyl biimide structure on
Preparation and properties of phosphorus flame retardant /zinc borate the thermal stability, flame retardancy and pyrolysis behavior of
composite flame-retardant PET[J]. China Synthetic Fiber Industry PET[J]. Polymer Degradation and Stability, 2018, 155: 162-172.
(合成纤维工业), 2016, 39(3): 21-25. [49] LIU B W, CHEN L, GUO D M, et al. Fire-safe polyesters enabled by
[35] LIU H M, WANG R, XU X. Static and dynamic mechanical end-group capturing chemistry[J]. Angew Chem Int Ed, 2019,
properties of flame-retardant copolyester/nano-ZnCO 3 composites[J]. 58(27): 9188-9193.
Journal of Applied Polymer Science, 2011, 121(6): 3131-3136. [50] ZHANG Y, CHEN L, ZHAO J J, et al. A phosphorus-containing PET
[36] GE X G, WANG D Y, WANG C, et al. A novel phosphorus-containing ionomer: From ionic aggregates to flame retardance and restricted
copolyester/montmorillonite nanocomposites with improved flame melt-dripping[J]. Polymer Chemistry, 2014, 5(6): 1982-1991.
retardancy[J]. European Polymer Journal, 2007, 43(7): 2882-2890. [51] ZHANG Y, NI Y P, HE M X, et al. Phosphorus-containing
[37] FENG X X, LIU M J, ZHANG J C. Study on the preparation and copolyesters: The effect of ionic group and its analogous phosphorus
properties of the phosphorus-containing flame retardant PET heterocycles on their flame-retardant and anti-dripping performances[J].
copolymer[J]. Advanced Materials Research,2013, 652/653/654: 410-413. Polymer, 2015, 60: 50-61.
[38] GAO J W (高建伟), WANG R (王锐), DONG Z F (董振峰), et al. [52] GE X G, WANG C, HU Z, et al. Phosphorus-containing telechelic
Preparation and properties of PET with synergistic flame retardant polyester-based ionomer: Facile synthesis and antidripping effects[J].
containing phosphorus and fluoride[J]. Journal of Beijing Institute of Journal of Polymer Science Part A: Polymer Chemistry, 2008, 46(9):
Clothing Technology (北京服装学院学报), 2019, 39(2): 1-9. 2994-3006.
(上接第 33 页) 2143-2146.
[62] YUAN Z L, WANG H Y, MU X, et al. Highly selective Pd-catalyzed
[57] CHEN B, FANG C C, LIU P. Rhodium-catalyzed enantioselective intermolecular fluorosulfonylation of styrenes[J]. Journal of the
radical addition of CX 4 reagents to olefins[J]. Angewandte Chemie American Chemical Society, 2015, 137(7): 2468-2471.
International Edition, 2017, 56(30): 8780-8784. [63] ZHENG F, MIN Q Q, ZHANG X G, et al. Palladium-catalyzed
[58] ZHANG Y Y, CHEN C, ZHAO J H, et al. Rhodium-catalyzed heck-type difluoroalkylation of alkenes with functionalized
cascade radical cyclization of 1, 6-enynes with Br-CX 3: Access to difluoromethyl bromides[J]. Synthesis, 2015, 47(19): 2912-2923.
bromine-containing trihalomethylated pyrrolidines[J]. Asian Journal [64] ZHANG F, XIAO Y L, ZHANG X G, et al. Palladium-catalyzed
of Organic Chemistry, 2019, 8(12): 2249-2256. phosphonyldifluoromethylation of alkenes with bromodifluoro-
[59] OHKUMA T, OOKA H, IKARIYA T, et al. Preferential hydrogenation methylphosphonate[J]. Organic Chemistry Frontiers, 2016, 3(4): 466-
of aldehydes and ketones[J]. Journal of the American Chemical 469.
Society, 1995, 117(41): 10417-10418. [65] LIAO J H, FAN L F, GUO W, et al. Palladium-catalyzed
[60] JONES J H. The CativaTM process for the manufacture of acetic fluoroalkylative cyclization of olefins[J]. Organic Letters, 2017,
acid[J]. Platinum Metals Review, 2000, 44(3): 94-105. 19(5): 1008-1011.
[61] TSUN J, HARA M, OHNO K. Organic synthesis by means of noble [66] HAYASHI T. Axially chiral monophosphine ligands (MOPs) and
metal complexes-XCIV: Palladium catalyzed hydrosilylation of their use for palladium-catalyzed asymmetric hydrosilylation of
monoenes and conjugated dienes[J]. Tetrahedron, 1974, 30(24): olefins[J]. Catalysis Today, 2000, 62(1): 3-15.