Page 121 - 《精细化工》2021年第11期
P. 121

2+
             第 11 期                      陈   康,等: PIPD/Cu 纳米纤维气凝胶的制备及性能                              ·2267·

            PIPD 纳 米 纤 维气凝 胶的 力学性 能, 增强后 的                         Journal of Materials Chemistry A, 2018, 6(42): 20769-20777.
                    2+
            PIPD/Cu -0.5%纳米纤维气凝胶的压缩应力达到                        [14]  HAGEMAN J C L, VAN DER HORST J W, DE GROOT R A. An
                                                                   abinitio study of the structural and physical properties of a novel
            1.9  MPa,是 PIPD 纳米纤维气凝胶的约 16 倍,杨                       rigid-rod polymer: PIPD[J]. Polymer, 1999, 40(5): 1313-1323.
                                          2+
            氏模量约为 1.32 MPa,PIPD/Cu -0.5%纳米纤维气                  [15]  TOMLIN D W, FRATINI A V, HUNSAKER M, et al. The role of
                                                                   hydrogen bonding in rigid-rod polymers: The crystal structure of a
            凝胶能自支撑 500 g 砝码。                                       polybenzobisimidazole model compound[J]. Polymer, 2000, 41(25):
                                                                   9003-9010.
            参考文献:                                              [16]  DEVILLE S, SAIZ E, NALLA R K, et al. Freezing as a path to build
            [1]   WANG L (王璐), WANG Y L (王友利). Research progress and trend   complex composites[J]. Science, 2006, 311(5760): 515-518.
                 analysis of hypersonic vehiclethermal protection technology[J].   [17]  YU Z L, NING Y, ZHOU L C, et al. Bioinspired polymeric woods[J].
                 Aerospace Materials & Technology (宇航材料工艺), 2016, 46(1):   Science Advances, 2018, 4(8): eaat7223.
                                                               [18]  ZHU Z X,  YAO H J, WANG F, et  al. Fiber reinforced  polyimide
                 1-6.
            [2]   WICKLEIN B, KOCJAN A, SALAZAR-ALVAREZ G, et al.   aerogel composites with high mechanical strength for high
                 Thermally insulating and fire-retardant lightweight anisotropic foams   temperature  insulation[J].  Macromolecular  Materials  and
                                                                   Engineering, 2019, 304(5): 1800676.
                 based  on  nanocellulose  and  graphene  oxide[J].  Nature
                 Nanotechnology, 2015, 10(3): 277-283.         [19]  ZHAO L C (赵梁成), LI B (李斌), LI T (李覃), et al. Preparation and
            [3]   JELLE B P. Traditional, state-of-the-art and future thermal building   properties of three-dimensional graphene/polyurethane  composites[J].
                                                                   Fine Chemicals (精细化工), 2018, 35(11): 1848-1852.
                 insulation materials and solutions-Properties, requirements and
                 possibilities[J]. Energy and Buildings, 2011, 43(10): 2549-2563.   [20]  ZU G Q, SHIMIZU T, KANAMORI K, et  al. Transparent,
            [4]   HUSING N, SCHUBERT U. Composition-structure relations in   superflexible doubly cross-linked polyvinylpolymethylsiloxane
                                                                   aerogel superinsulators in ambient pressure drying[J]. ACS Nano,
                 organically modified silica gels[J]. MRS Online Proceeding Library   2018, 12(1): 521-532.
                 Archive, 1999, 576(1): 117-127.
            [5]   PIERRE A C, PAJONK G M. Chemistry of aerogels and their   [21]  ZHANG X H, LI W, SONG P Y, et al. Double-cross-linking strategy
                                                                   for preparing flexible, robust, and multifunctional  polyimide
                 applications[J]. Chemical Reviews, 2002, 102(11): 4243-4266.   aerogel[J]. Chemical Engineering Journal, 2020, 381: 122784.
            [6]   QIAN Z C, WANG Z, ZHAO N, et  al. Aerogels derived from   [22]  ZHANG T, JIN J H, YANG S L, et al. Preparation and properties of
                 polymer nanofibers and their applications[J]. Macromol Rapid
                                                                   novel PIPD fibers[J]. Chinese Science  Bulletin, 2010, 55(36):
                 Commun, 2018, 39(14): 1700724                     4203-4207.
            [7]   KISTLER S S. Coherent expanded-aerogels[J]. The Journal of   [23]  ZHANG J T, JIN N R, GAO J R. Superior comprehensive
                 Physical Chemistry, 1932, 36(1): 52-64.
                                                                   performance of a rigid-rod  poly(hydroxy-p-phenylenebenzobisoxazole)
            [8]   PEKALA R W. Organic aerogels from the polycondensation  of   fiber [J]. Polymer, 2018, 149: 325-333.
                 resorcinol with formaldehyde[J]. Journal of Materials Science, 1989,   [24]  GUMIENICZEK  A, KOZAK I, ZMUDZKI P, et al. LC-UV and
                 24(9): 3221-3227.
                                                                   UPLC-MS/MS methods for analytical study on degradation of three
            [9]   AHRENS M.  Home fires that began with upholstered furniture[J].   antihistaminic drugs, ketotifen, epinastine and emedastine:
                 Journal of Conchology, 2011, 32(11): 181-183.     Percentage degradation, degradation kinetics and degradation
            [10]  WANG  Y T,  LIAO S F, SHANG K,  et al. Efficient approach to   pathways at different pH[J]. Processes, 2021, 9(1): 64.
                 improving the flame retardancy of poly(vinyl alcohol)/clay aerogels:   [25]  ANDERSON C R. Comparison  of APS and FRESCA core level
                 Incorporating piperazine-modified ammonium polyphosphate[J].   binding energy measurements[J]. Journal of Vacuum Science &
                 ACS Appl Mater Interfaces, 2015, 7(3):1780-1786.   Technology, 1982, 20(3): 617-621.
            [11]  GUO W W, LIU J J, ZHANG P,  et al. Multi-functional   [26]  KLEIN J C, PROCTOR A, HERCULES D M, et al. X-ray excited
                 hydroxyapatite/polyvinyl alcohol composite aerogels with self-   auger intensity ratios  for  differentiating copper compounds[J].
                 cleaning, superior  fire resistance and low thermal conductivity[J].   Analytical Chemistry, 1983, 55(13): 2055-2059.
                 Composites Science and Technology, 2018, 158: 128-136.   [27]  STROHMEIER B R, LEVDEN  D  E,  FIELD R  S, et al. Surface
            [12]  WI S, PARK J H, KIM Y U, et al.  Evaluation of environmental   spectroscopic characterization of CuAl 2O 3 catalysts[J]. Journal of
                 impact on the  formaldehyde emission and flame-retardant   Catalysis, 1985, 94(2): 514-530.
                 performance of thermal insulation materials[J]. Journal of Hazardous   [28]  GUO  Y  Y, GAO  Z L, LIU  Y H, et al. Multiple cross-linking-
                 Materials, 2021, 402: 123463.                     dominated metal-ligand coordinated hydrogels with tunable strength
            [13]  QIAN  Z C, YANG M,  LI  R, et  al. Fire-resistant,  ultralight,   and thermosensitivity[J]. ACS Applied Polymer Materials, 2019,
                 superelastic and thermally insulated polybenzazole aerogels[J].     1(9): 2370-2378.



            (上接第 2246 页)                                           properties[J]. Royal Society of Chemistry Advances, 2015, 5: 1-8.
            [16]  ALAM U, KUMAR S, BAHNEMANN D, et al. Harvesting visible   [19]  LAHMAR H, BENAMIRA M, DOUAFER S,  et al. Photocatalytic
                 light with MoO 3  nanorods modified by Fe(Ⅲ) nanoclusters for   degradation of Methyl Orange on the novel hetero-system La 2NiO 4/
                 effective photocatalytic degradation of organic pollutants[J]. Physical   ZnO under solar light[J]. Chemical Physics Letters, 2020, 742: 137132.
                 Chemistry Chemical Physics, 2018, 20: 4538-4545.     [20]  QIAO Z, YAN T J, LI W J, et al. In situ anion exchange synthesis of
            [17]  ZENG C, HU Y M, ZHANG T R, et al. A core-satellite structured   In 2S 3/In(OH) 3 heterostructures for efficient photocatalytic degradation
                 Z-scheme catalyst Cd 0.5Zn 0.5S/BiVO 4 for highly  efficient  and   of MO under solar light[J]. New Journal of Chemistry, 2017, 41(8):
                 stable photocatalytic water splitting[J]. Journal of Materials Chemistry   1-10.
                 A Materials for Energy & Sustainability, 2018, 8: 1-12.   [21]  KHAN A, DANISH M, ALAM U,  et al. Facile synthesis of a
            [18]  SONG Y P, WANG H, LI Z H,  et al. Fe 2(MoO 4) 3 nanoparticle-   Z-scheme ZnIn 2S 4/MoO 3 heterojunction with enhanced photocatalytic
                 anchored MoO 3  nanowires: Strong coupling  via the reverse   activity under visible light irradiation[J]. ACS Omega 2020, 5(14):
                 diffusion  of heteroatoms  and largely enhanced lithium  storage   8188-8199.
   116   117   118   119   120   121   122   123   124   125   126