Page 121 - 《精细化工》2021年第11期
P. 121
2+
第 11 期 陈 康,等: PIPD/Cu 纳米纤维气凝胶的制备及性能 ·2267·
PIPD 纳 米 纤 维气凝 胶的 力学性 能, 增强后 的 Journal of Materials Chemistry A, 2018, 6(42): 20769-20777.
2+
PIPD/Cu -0.5%纳米纤维气凝胶的压缩应力达到 [14] HAGEMAN J C L, VAN DER HORST J W, DE GROOT R A. An
abinitio study of the structural and physical properties of a novel
1.9 MPa,是 PIPD 纳米纤维气凝胶的约 16 倍,杨 rigid-rod polymer: PIPD[J]. Polymer, 1999, 40(5): 1313-1323.
2+
氏模量约为 1.32 MPa,PIPD/Cu -0.5%纳米纤维气 [15] TOMLIN D W, FRATINI A V, HUNSAKER M, et al. The role of
hydrogen bonding in rigid-rod polymers: The crystal structure of a
凝胶能自支撑 500 g 砝码。 polybenzobisimidazole model compound[J]. Polymer, 2000, 41(25):
9003-9010.
参考文献: [16] DEVILLE S, SAIZ E, NALLA R K, et al. Freezing as a path to build
[1] WANG L (王璐), WANG Y L (王友利). Research progress and trend complex composites[J]. Science, 2006, 311(5760): 515-518.
analysis of hypersonic vehiclethermal protection technology[J]. [17] YU Z L, NING Y, ZHOU L C, et al. Bioinspired polymeric woods[J].
Aerospace Materials & Technology (宇航材料工艺), 2016, 46(1): Science Advances, 2018, 4(8): eaat7223.
[18] ZHU Z X, YAO H J, WANG F, et al. Fiber reinforced polyimide
1-6.
[2] WICKLEIN B, KOCJAN A, SALAZAR-ALVAREZ G, et al. aerogel composites with high mechanical strength for high
Thermally insulating and fire-retardant lightweight anisotropic foams temperature insulation[J]. Macromolecular Materials and
Engineering, 2019, 304(5): 1800676.
based on nanocellulose and graphene oxide[J]. Nature
Nanotechnology, 2015, 10(3): 277-283. [19] ZHAO L C (赵梁成), LI B (李斌), LI T (李覃), et al. Preparation and
[3] JELLE B P. Traditional, state-of-the-art and future thermal building properties of three-dimensional graphene/polyurethane composites[J].
Fine Chemicals (精细化工), 2018, 35(11): 1848-1852.
insulation materials and solutions-Properties, requirements and
possibilities[J]. Energy and Buildings, 2011, 43(10): 2549-2563. [20] ZU G Q, SHIMIZU T, KANAMORI K, et al. Transparent,
[4] HUSING N, SCHUBERT U. Composition-structure relations in superflexible doubly cross-linked polyvinylpolymethylsiloxane
aerogel superinsulators in ambient pressure drying[J]. ACS Nano,
organically modified silica gels[J]. MRS Online Proceeding Library 2018, 12(1): 521-532.
Archive, 1999, 576(1): 117-127.
[5] PIERRE A C, PAJONK G M. Chemistry of aerogels and their [21] ZHANG X H, LI W, SONG P Y, et al. Double-cross-linking strategy
for preparing flexible, robust, and multifunctional polyimide
applications[J]. Chemical Reviews, 2002, 102(11): 4243-4266. aerogel[J]. Chemical Engineering Journal, 2020, 381: 122784.
[6] QIAN Z C, WANG Z, ZHAO N, et al. Aerogels derived from [22] ZHANG T, JIN J H, YANG S L, et al. Preparation and properties of
polymer nanofibers and their applications[J]. Macromol Rapid
novel PIPD fibers[J]. Chinese Science Bulletin, 2010, 55(36):
Commun, 2018, 39(14): 1700724 4203-4207.
[7] KISTLER S S. Coherent expanded-aerogels[J]. The Journal of [23] ZHANG J T, JIN N R, GAO J R. Superior comprehensive
Physical Chemistry, 1932, 36(1): 52-64.
performance of a rigid-rod poly(hydroxy-p-phenylenebenzobisoxazole)
[8] PEKALA R W. Organic aerogels from the polycondensation of fiber [J]. Polymer, 2018, 149: 325-333.
resorcinol with formaldehyde[J]. Journal of Materials Science, 1989, [24] GUMIENICZEK A, KOZAK I, ZMUDZKI P, et al. LC-UV and
24(9): 3221-3227.
UPLC-MS/MS methods for analytical study on degradation of three
[9] AHRENS M. Home fires that began with upholstered furniture[J]. antihistaminic drugs, ketotifen, epinastine and emedastine:
Journal of Conchology, 2011, 32(11): 181-183. Percentage degradation, degradation kinetics and degradation
[10] WANG Y T, LIAO S F, SHANG K, et al. Efficient approach to pathways at different pH[J]. Processes, 2021, 9(1): 64.
improving the flame retardancy of poly(vinyl alcohol)/clay aerogels: [25] ANDERSON C R. Comparison of APS and FRESCA core level
Incorporating piperazine-modified ammonium polyphosphate[J]. binding energy measurements[J]. Journal of Vacuum Science &
ACS Appl Mater Interfaces, 2015, 7(3):1780-1786. Technology, 1982, 20(3): 617-621.
[11] GUO W W, LIU J J, ZHANG P, et al. Multi-functional [26] KLEIN J C, PROCTOR A, HERCULES D M, et al. X-ray excited
hydroxyapatite/polyvinyl alcohol composite aerogels with self- auger intensity ratios for differentiating copper compounds[J].
cleaning, superior fire resistance and low thermal conductivity[J]. Analytical Chemistry, 1983, 55(13): 2055-2059.
Composites Science and Technology, 2018, 158: 128-136. [27] STROHMEIER B R, LEVDEN D E, FIELD R S, et al. Surface
[12] WI S, PARK J H, KIM Y U, et al. Evaluation of environmental spectroscopic characterization of CuAl 2O 3 catalysts[J]. Journal of
impact on the formaldehyde emission and flame-retardant Catalysis, 1985, 94(2): 514-530.
performance of thermal insulation materials[J]. Journal of Hazardous [28] GUO Y Y, GAO Z L, LIU Y H, et al. Multiple cross-linking-
Materials, 2021, 402: 123463. dominated metal-ligand coordinated hydrogels with tunable strength
[13] QIAN Z C, YANG M, LI R, et al. Fire-resistant, ultralight, and thermosensitivity[J]. ACS Applied Polymer Materials, 2019,
superelastic and thermally insulated polybenzazole aerogels[J]. 1(9): 2370-2378.
(上接第 2246 页) properties[J]. Royal Society of Chemistry Advances, 2015, 5: 1-8.
[16] ALAM U, KUMAR S, BAHNEMANN D, et al. Harvesting visible [19] LAHMAR H, BENAMIRA M, DOUAFER S, et al. Photocatalytic
light with MoO 3 nanorods modified by Fe(Ⅲ) nanoclusters for degradation of Methyl Orange on the novel hetero-system La 2NiO 4/
effective photocatalytic degradation of organic pollutants[J]. Physical ZnO under solar light[J]. Chemical Physics Letters, 2020, 742: 137132.
Chemistry Chemical Physics, 2018, 20: 4538-4545. [20] QIAO Z, YAN T J, LI W J, et al. In situ anion exchange synthesis of
[17] ZENG C, HU Y M, ZHANG T R, et al. A core-satellite structured In 2S 3/In(OH) 3 heterostructures for efficient photocatalytic degradation
Z-scheme catalyst Cd 0.5Zn 0.5S/BiVO 4 for highly efficient and of MO under solar light[J]. New Journal of Chemistry, 2017, 41(8):
stable photocatalytic water splitting[J]. Journal of Materials Chemistry 1-10.
A Materials for Energy & Sustainability, 2018, 8: 1-12. [21] KHAN A, DANISH M, ALAM U, et al. Facile synthesis of a
[18] SONG Y P, WANG H, LI Z H, et al. Fe 2(MoO 4) 3 nanoparticle- Z-scheme ZnIn 2S 4/MoO 3 heterojunction with enhanced photocatalytic
anchored MoO 3 nanowires: Strong coupling via the reverse activity under visible light irradiation[J]. ACS Omega 2020, 5(14):
diffusion of heteroatoms and largely enhanced lithium storage 8188-8199.