Page 51 - 《精细化工》2021年第11期
P. 51
第 11 期 江 琦,等: 由特殊形貌基材构建的耐磨双疏表面研究进展 ·2197·
论模型。 [14] ZHANG B B, XU W C, XIA D H, et al. Spray coated
(2)就基材微结构形貌和尺度对粗糙层纳米结 superamphiphobic surface with hot water repellency and durable
corrosion resistance[J]. Colloids and Surfaces A: Physicochemical
构以及疏液表面机械稳定性的影响进行定量化研究。 and Engineering Aspects, 2020, 596: 124750.
(3)进一步拓展基材种类和基材表面微结构构建 [15] WEN Q Y, GUO F, PENG Y B, et al. Simple fabrication of
的研究范围,制备更为丰富的机械稳定的超疏材料。 superamphiphobic copper surfaces with multilevel structures[J].
Colloids and Surfaces A: Physicochemical and Engineering Aspects,
(4)着力简化制备工艺,降低制备成本,为机
2018, 539: 11-17.
械稳定的超疏表面的规模化应用奠定基础。 [16] WU Y, ZHAO M Y, GUO Z G. Multifunctional superamphiphobic
总之,表面粗糙度+疏液基团的组合是自然界给 SiO 2 coating for crude oil transportation[J]. Chemical Engineering
Journal, 2018, 334: 1584-1593.
人类的重要启示,而将双疏和机械稳定分别考虑再
[17] WANG M K, ZHANG Z Z, WANG Y L, et al. Superwetting fabrics
进行整合的思路则是人类超越自然的自觉选择。随 towards multifunctional applications: Oil/water separation, anti-
着研究的不断深入,相信在不久的将来,高效多功 fouling and flame-retardance[J]. Applied Surface Science, 2020, 508:
能、价廉易得、环境友好的长寿命超疏表面一定会 145265.
[18] QU M N, LIU L L, LIU Q, et al. Highly stable superamphiphobic
成为人类生产生活中的重要伙伴。 material with ethanol-triggered switchable wettability for high-
efficiency on-demand oil-water separation[J]. Journal of Materials
参考文献: Science, 2021, 56(4): 2961-2978.
[1] MA R (马瑞), JIANG Q (江琦). Superhydrophobic materials [19] WONG W S Y. Surface chemistry enhancements for the tunable
constructed from inorganic special surface structure[J]. Chemical super-liquid repellency of low-surface-tension liquids[J]. Nano
Industry and Engineering Progress (化工进展), 2019, 38(9): 4119- Letters, 2019, 19(3): 1892-1901.
4130. [20] SUN Y H, GUO Z G. A scalable, self-healing and hot liquid repelling
[2] WANG H J, ZHANG Z H, WANG Z K, et al. Multistimuli- superamphiphobic spray coating with remarkable mechanochemical
responsive microstructured superamphiphobic surfaces with large- robustness for real-life applications[J]. Nanoscale, 2019, 11(29): 13853-
range, reversible switchable wettability for oil[J]. ACS Applied 13862.
Materials & Interfaces, 2019, 11(31): 28478-28486. [21] FENG S S, ZHONG Z X, ZHANG F, et al. Amphiphobic
[3] LI D K, GUO Z G. Versatile superamphiphobic cotton fabrics polytetrafluoroethylene membranes for efficient organic aerosol
fabricated by coating with SiO 2/FOTS[J]. Applied Surface Science, removal[J]. ACS Applied Materials & Interfaces, 2016, 8(13): 8773-
8781.
2017, 426: 271-278.
[22] JIANG G, LI Y, LING L, et al. The relation between
[4] YANG X N, TIAN L M, WANG W, et al. Bio-inspired superhydro-
(meth)fluoroacrylate copolymer structure and reservoir rock
phobic self-healing surfaces with synergistic anticorrosion
wettability[J]. Energy Sources, Part A: Recovery, Utilization, and
performance[J]. Journal of Bionic Engineering, 2020, 17(6): 1196-
Environmental Effects, 2015, 37(9): 947-955.
1208.
[23] LIU S, ZHOU H, WANG H X, et al. Argon-plasma reinforced
[5] FENG L, LI S H, LI Y, et al. Super-hydrophobic surfaces: From
superamphiphobic fabrics[J]. Small, 2017, 13(40): 1701891.
natural to artificial[J]. Advanced Materials, 2002, 14(24): 1857-1860.
[24] TEISALA H, BUTT H J. Hierarchical structures for superhydrophobic
[6] HU D L, CHAN B, BUSH J W M. The hydrodynamics of water
and superoleophobic surfaces[J]. Langmuir, 2019, 35(33): 10689-
strider locomotion[J]. Nature, 2003, 424(6949): 663-666.
10703.
[7] BLOSSEY R. Self-cleaning surfaces—Virtual realities[J]. Nature
[25] ATTHI N, DIELEN M, SRIPUMKHAI W, et al. Fabrication of high
Materials, 2003, 2(5): 301-306.
aspect ratio micro-structures with superhydrophobic and oleophobic
[8] KIM D C, HA Y G. Cross-linked organic-inorganic hybrid composite
properties by using large-area roll-to-plate nanoimprint lithography[J].
films for one-step fabrication of robust superhydrophobic surfaces[J].
Nanomaterials, 2021, 11(2): 339.
Journal of Nanoscience and Nanotechnology, 2020, 20(2): 1028-1032.
[26] LI X M, WANG D H, TAN Y, et al. Designing transparent
[9] ZHANG X M (张雪梅), LI J H (李金辉), ZHANG J Y (张家银), micro/nano re-entrant-coordinated superamphiphobic surfaces with
et al. Preparation of a magnetically driven superhydrophobic sponge ultralow solid/liquid adhesion[J]. ACS Applied Materials &
for oil and water separation[J]. Fine Chemicals (精细化工), 2019, Interfaces, 2019, 11(32): 29458-29465.
36(4): 622-626, 632. [27] CHAO J Q, FENG J K, CHEN F Z, et al. Fabrication of
[10] WONG W S Y, CORRALES T P, NAGA A, et al. Microdroplet superamphiphobic surfaces with controllable oil adhesion in air[J].
contaminants: When and why superamphiphobic surfaces are not Colloids and Surfaces A: Physicochemical and Engineering Aspects,
self-cleaning[J]. ACS Nano, 2020, 14(4): 3836-3846. 2021, 610: 125708.
[11] PENG J Y, ZHAO X J, WANG W F, et al. Durable self-cleaning [28] WANG H Y, GAO D, MENG Y, et al. Corrosion-resistance, robust
surfaces with superhydrophobic and highly oleophobic properties[J]. and wear-durable highly amphiphobic polymer based composite
Langmuir, 2019, 35(25): 8404-8412. coating via a simple spraying approach[J]. Progress in Organic
[12] YUAN R X, WU S Q, YU P, et al. Superamphiphobic and Coatings, 2015, 82: 74-80.
electroactive nanocomposite toward self cleaning, antiwear, and [29] GHADIMI M R, DOLATI A. Preparation and characterization of
anticorrosion coatings[J]. ACS Applied Materials & Interfaces, 2016, superhydrophobic and highly oleophobic FEVE-SiO 2 nanocomposite
8(19): 12481-12493. coatings[J]. Progress in Organic Coatings, 2020, 138: 105388.
[13] QIAO Y F (乔燕芳), WANG L Q (王利强). Preparation and [30] CHEN J H, LIU Z H, WEN X F, et al. Two-step approach for
properties of oriented anti-adhesion lubricating coating[J]. Fine fabrication of durable superamphiphobic fabrics for self-cleaning,
Chemicals (精细化工), 2019, 36(10): 2023-2027, 2051. antifouling, and on-demand oil/water separation[J]. Industrial &