Page 51 - 《精细化工》2021年第11期
P. 51

第 11 期                   江   琦,等:  由特殊形貌基材构建的耐磨双疏表面研究进展                                 ·2197·


            论模型。                                               [14]  ZHANG B  B, XU W C,  XIA D H,  et al. Spray coated
                (2)就基材微结构形貌和尺度对粗糙层纳米结                              superamphiphobic  surface with hot  water repellency  and durable
                                                                   corrosion resistance[J]. Colloids and  Surfaces A: Physicochemical
            构以及疏液表面机械稳定性的影响进行定量化研究。                                and Engineering Aspects, 2020, 596: 124750.
                (3)进一步拓展基材种类和基材表面微结构构建                         [15]  WEN Q Y, GUO F, PENG Y B,  et al. Simple fabrication of
            的研究范围,制备更为丰富的机械稳定的超疏材料。                                superamphiphobic copper surfaces with multilevel structures[J].
                                                                   Colloids and Surfaces A: Physicochemical and Engineering Aspects,
                (4)着力简化制备工艺,降低制备成本,为机
                                                                   2018, 539: 11-17.
            械稳定的超疏表面的规模化应用奠定基础。                                [16]  WU Y, ZHAO M Y, GUO  Z G.  Multifunctional superamphiphobic
                 总之,表面粗糙度+疏液基团的组合是自然界给                             SiO 2 coating for crude oil transportation[J]. Chemical  Engineering
                                                                   Journal, 2018, 334: 1584-1593.
            人类的重要启示,而将双疏和机械稳定分别考虑再
                                                               [17]  WANG M K, ZHANG Z Z, WANG Y L, et al. Superwetting fabrics
            进行整合的思路则是人类超越自然的自觉选择。随                                 towards multifunctional applications: Oil/water separation, anti-
            着研究的不断深入,相信在不久的将来,高效多功                                 fouling and flame-retardance[J]. Applied Surface Science, 2020, 508:
            能、价廉易得、环境友好的长寿命超疏表面一定会                                 145265.
                                                               [18]  QU M N, LIU L L, LIU Q, et al. Highly stable superamphiphobic
            成为人类生产生活中的重要伙伴。                                        material with ethanol-triggered switchable wettability for high-
                                                                   efficiency on-demand oil-water separation[J]. Journal of  Materials
            参考文献:                                                  Science, 2021, 56(4): 2961-2978.
            [1]   MA R (马瑞), JIANG Q (江琦). Superhydrophobic  materials   [19]  WONG W S Y. Surface chemistry enhancements for the tunable
                 constructed from inorganic  special surface structure[J]. Chemical   super-liquid  repellency of low-surface-tension liquids[J]. Nano
                 Industry and Engineering Progress (化工进展),  2019, 38(9): 4119-   Letters, 2019, 19(3): 1892-1901.
                 4130.                                         [20]  SUN Y H, GUO Z G. A scalable, self-healing and hot liquid repelling
            [2]   WANG  H J, ZHANG Z H, WANG Z  K, et  al. Multistimuli-   superamphiphobic spray coating with remarkable mechanochemical
                 responsive microstructured  superamphiphobic surfaces with large-   robustness for real-life applications[J]. Nanoscale, 2019, 11(29): 13853-
                 range, reversible switchable wettability for  oil[J]. ACS Applied   13862.
                 Materials & Interfaces, 2019, 11(31): 28478-28486.   [21]  FENG S S, ZHONG Z X, ZHANG F,  et al. Amphiphobic
            [3]   LI D K, GUO  Z G. Versatile  superamphiphobic  cotton fabrics   polytetrafluoroethylene  membranes for efficient  organic aerosol
                 fabricated by coating with SiO 2/FOTS[J]. Applied Surface Science,   removal[J]. ACS Applied Materials & Interfaces, 2016, 8(13): 8773-
                                                                   8781.
                 2017, 426: 271-278.
                                                               [22]  JIANG G, LI  Y, LING L,  et al. The relation between
            [4]   YANG X N, TIAN L M, WANG W, et al. Bio-inspired superhydro-
                                                                   (meth)fluoroacrylate copolymer structure and reservoir rock
                 phobic self-healing surfaces with synergistic anticorrosion
                                                                   wettability[J]. Energy Sources, Part A: Recovery, Utilization, and
                 performance[J]. Journal of Bionic Engineering, 2020, 17(6): 1196-
                                                                   Environmental Effects, 2015, 37(9): 947-955.
                 1208.
                                                               [23]  LIU S, ZHOU H, WANG H X,  et al. Argon-plasma reinforced
            [5]   FENG L, LI S H, LI  Y,  et al. Super-hydrophobic surfaces: From
                                                                   superamphiphobic fabrics[J]. Small, 2017, 13(40): 1701891.
                 natural to artificial[J]. Advanced Materials, 2002, 14(24): 1857-1860.
                                                               [24]  TEISALA H, BUTT H J. Hierarchical structures for superhydrophobic
            [6]   HU D L,  CHAN  B,  BUSH J  W M.  The hydrodynamics of water
                                                                   and superoleophobic  surfaces[J]. Langmuir,  2019, 35(33): 10689-
                 strider locomotion[J]. Nature, 2003, 424(6949): 663-666.
                                                                   10703.
            [7]   BLOSSEY  R. Self-cleaning surfaces—Virtual realities[J]. Nature
                                                               [25]  ATTHI N, DIELEN M, SRIPUMKHAI W, et al. Fabrication of high
                 Materials, 2003, 2(5): 301-306.
                                                                   aspect ratio micro-structures with superhydrophobic and oleophobic
            [8]   KIM D C, HA Y G. Cross-linked organic-inorganic hybrid composite
                                                                   properties by using large-area roll-to-plate nanoimprint lithography[J].
                 films for one-step fabrication of robust superhydrophobic surfaces[J].
                                                                   Nanomaterials, 2021, 11(2): 339.
                 Journal of Nanoscience and Nanotechnology, 2020, 20(2): 1028-1032.
                                                               [26]  LI X M, WANG D H, TAN  Y,  et al. Designing transparent
            [9]   ZHANG X M (张雪梅), LI J H (李金辉), ZHANG J  Y (张家银),   micro/nano re-entrant-coordinated  superamphiphobic surfaces with
                 et al. Preparation of a magnetically driven superhydrophobic sponge   ultralow solid/liquid adhesion[J]. ACS Applied Materials &
                 for  oil and water separation[J]. Fine  Chemicals (精细化工), 2019,   Interfaces, 2019, 11(32): 29458-29465.
                 36(4): 622-626, 632.                          [27]  CHAO J  Q, FENG J K,  CHEN F Z,  et al. Fabrication of
            [10]  WONG W S Y, CORRALES T P, NAGA  A,  et al. Microdroplet   superamphiphobic surfaces with controllable oil adhesion in air[J].
                 contaminants: When and why superamphiphobic surfaces are not   Colloids and Surfaces A: Physicochemical and Engineering Aspects,
                 self-cleaning[J]. ACS Nano, 2020, 14(4): 3836-3846.   2021, 610: 125708.
            [11]  PENG J Y,  ZHAO X J,  WANG  W F,  et al. Durable  self-cleaning   [28]  WANG H Y, GAO D, MENG Y, et al. Corrosion-resistance, robust
                 surfaces with superhydrophobic and highly oleophobic properties[J].   and wear-durable highly amphiphobic polymer based  composite
                 Langmuir, 2019, 35(25): 8404-8412.                coating  via a simple spraying approach[J]. Progress in Organic
            [12]  YUAN R  X, WU S Q,  YU P,  et al. Superamphiphobic and   Coatings, 2015, 82: 74-80.
                 electroactive nanocomposite toward  self cleaning, antiwear, and   [29]  GHADIMI M R,  DOLATI A. Preparation and characterization of
                 anticorrosion coatings[J]. ACS Applied Materials & Interfaces, 2016,   superhydrophobic and highly oleophobic FEVE-SiO 2 nanocomposite
                 8(19): 12481-12493.                               coatings[J]. Progress in Organic Coatings, 2020, 138: 105388.
            [13]  QIAO  Y F (乔燕芳), WANG L Q (王利强). Preparation and   [30]  CHEN J H, LIU  Z H, WEN X F,  et al. Two-step approach for
                 properties of oriented anti-adhesion lubricating coating[J]. Fine   fabrication of durable superamphiphobic fabrics for self-cleaning,
                 Chemicals (精细化工), 2019, 36(10): 2023-2027, 2051.   antifouling, and on-demand oil/water separation[J]. Industrial &
   46   47   48   49   50   51   52   53   54   55   56