Page 114 - 《精细化工》2021年第4期
P. 114

·748·                             精细化工   FINE CHEMICALS                                 第 38 卷

            失去黏性,从而使被黏附物体脱落。                                   [5]   CHUNG J E,  YOKOYAMA M,  YAMATO  M,  et al. Thermo-
                                                                   responsive drug delivery from polymeric micelles constructed using
                                                                   block  copolymers  of  poly(N-isopropylacrylamide)  and
                                                                   poly(butylmethacrylate)[J]. Journal of Controlled Release, 1999,
                                                                   62(1/2): 115-127.
                                                               [6]   WANG J (王静), LIU  H K  (刘红科), LIU P S (刘平生),  et al.
                                                                   Research progress of  high-strength hydrogel  nanocomposites[J].
                                                                   Materials Reports (材料导报), 2018, 32(1): 67-75.
                                                               [7]   LI Z (黎朝), YU L (於麟), ZHENG Z (郑震), et al. Functionlization
                                                                   of high-strength hydrogels with regular network structures[J].
                                                                   Progress in Chemistry (化学进展), 2017, 29(7): 706-719.
                                                               [8]   HARAGUCHI  K,  LI H J, MATSUDA K,  et al. Mechanism  of
                                                                   forming  organic/inorganic network structures during in-situ free-
                                                                   radical polymerization in PNIPA-clay nanocomposite hydrogels[J].
                                                                   Macromolecules, 2005, 38(8): 3482-3490.
                                                               [9]   HARAGUCHI  K,  LI H J. Mechanical properties and structure of
                                                                   polymer-clay nanocomposite gels  with high clay content[J].

            a—L-PNIPAM-12.0 水凝胶;b—L-PNIPAM/GO-12.0-0.21 水凝胶        Macromolecules, 2006, 39(5): 1898-1905.
                                                               [10]  LIAN C,  ZHANG E, WANG T,  et al. Binding  interaction and
                      图 10   水凝胶的光控脱附示意图
            Fig. 10    Schematic diagram  of light-controlled desorption   gelation in aqueous mixtures of poly(N-isopropylacrylamide) and
                                                                   hectorite clay[J]. Journal of  Physical Chemistry B, 2015, 119(2):
                    of the hydrogels
                                                                   612-619.
                                                               [11]  DE FRANCE K J, CRANSTON E  D, HOARE  T. Mechanically
            3   结论                                                 reinforced injectable hydrogels[J]. ACS Applied Polymer Materials,
                                                                   2019, 2(3): 1016-1030.
                 采用锂藻土为物理交联剂、GO 为光热转换试                         [12]  SUN X,  YAO F,  LI J. Nanocomposite hydrogel-based  strain and
            剂,通过 NIPAM 原位聚合制备了近红外光响应                               pressure sensors:  A review[J]. Journal of Materials Chemistry A,
                                                                   2020, 8(36): 18605-18623.
            L-PNIPAM/GO 水凝胶。以锂藻土为物理交联剂的水                       [13]  ZHANG N (张宁), SHAN G  R (单国荣). Near-infrared light and
            凝胶具有较好的拉伸性能;GO 的引入不仅使水凝                                temperature responsive nanocomposite hydrogel[J]. CIESC Journal
                                                                   (化工学报), 2018, 69(11): 4862-4868.
            胶具有光热响应性,还可以充当交联点。锂藻土和
                                                               [14]  LI M H, BAE J. Tunable swelling and deswelling of temperature-and
            GO 含量分别为 NIPAM 质量的 12.0%和 0.21%时,                      light-responsive graphene oxide-poly(N-isopropylacrylamide) composite
            制备的 L-PNIPAM/GO-12.0-0.21 水凝胶拉伸强度为                     hydrogels[J]. Polymer Chemistry, 2020, 11(13): 2332-2338.
                                                               [15]  WARREN D S, SUTHERLAND S  P H, KAO J Y,  et al. The
            123.98 kPa,断裂伸长率为 1181%,呈现较好的力学                        preparation and  simple analysis of a clay nanoparticle composite
            性能。L-PNIPAM/GO-12.0-0.21 水凝胶具有光热效                      hydrogel[J]. Journal of Chemical  Education, 2017, 94(11): 1772-
                                                                   1779.
            应,其 VPTT 为 36  ℃;经 2 W 808 nm NIR  照射,
                                                               [16]  HARAGUCHI K, TAKEHISA T, FAN S. Effects of clay content on
            300 s 内温度可以从 20.3  ℃升高到 48.5  ℃,在光控                    the properties of  nanocomposite hydrogels composed of poly(N-
            流体开关及光控脱附方面具有一定的应用潜力。                                  isopropylacrylamide) and clay[J]. Macromolecules, 2002, 35(27):
                                                                   10162-10171.
            参考文献:                                              [17]  HARAGUCHI  K,  LI H J. Mechanical properties and structure of
                                                                   polymer-clay nanocomposite gels  with high clay content[J].
            [1]   YAN H (严昊), TANG P (唐萍), LI S H (李书宏), et al. Research   Macromolecules, 2006, 39(5): 1898-1905.
                 progress of biomimetic  anisotropic poly(N-isopropylacrylamide)   [18]  LI S, QIN H L, ZHANG T, et al. Highly tough bioinspired ternary
                 hydrogel intelligent response actuator[J]. Chemical Journal of   hydrogels synergistically reinforced by graphene/xonotlite network[J].
                 Chinese Universities (高等学校化学学报), 2020, 41(5): 936-946.     Small, 2018, 14(22): 1800673.
            [2]   LIU Y (刘阳), YIN Y L (尹玉利), HE  Y (贺艳). Research and   [19]  LING J, LI N,  YANG X,  et al. Strengthening mechanism of poly
                 application progress of poly(N-isopropylacrylamide) temperature-   (acrylamide)/graphene  oxide/laponite  dual  nanocomposite
                 sensitive hydrogel[J]. Polymer Bulletin (高分子通报), 2019, (7):   hydrogels[J]. Journal of Applied Polymer Science, 2017, 134(24):
                 13-19.                                            44963.
            [3]   ZHANG W (张伟), LIAO Z F (廖正芳), A E P D·AI NIWAER (阿尔  [20]  CHOUHAN  D K, PATRO T U,  HARIKRISHNAN G,  et al.
                 普丁·艾尼娃尔), et al. Preparation and properties of a luminescent   Graphene oxide-laponite hybrid from highly stable aqueous
                 thermo-sensitive hydrogel doped with upconversion nanoparticles[J].   dispersion[J]. Applied Clay Science, 2016, 132: 105-113.
                 Fine Chemicals (精细化工), 2020, 37(2): 270-277.     [21]  YANG J, HU D D, ZHANG H. Preparation and thermally induced
            [4]   GU J X, XIA F, WU Y, et al. Programmable delivery of hydrophilic   adhesion properties of a poly(vinyl alcohol)-g-N-isopropylacrylamide
                 drug using dually responsive hydrogel cages[J]. Journal of Controlled   copolymer  membrane[J]. Reactive  and Functional Polymers, 2012,
                 Release, 2007, 117(3): 396-402.                   72(7): 438-445.
   109   110   111   112   113   114   115   116   117   118   119