Page 211 - 《精细化工》2021年第4期
P. 211
第 4 期 钟 鑫,等: 单宁基酚胺型螯合树脂的制备及对 Cr(Ⅵ)的吸附 ·845·
118-126. [19] ZHANG G X (张恭孝), YANG R H (杨荣华), CHEN Y X (陈玉
[13] SONG L J (宋立江), DI Y (狄莹), SHI B (石碧). The significance 新) , et al. Synthesis of 3-methylamino-1,2-propandiol catalyzed by
and development trend in research of plant polyphenols[J]. Progress solid base catalyst[J]. Fine Chemicals (精细化工), 2015, 32(10):
in Chemistry (化学进展), 2000, 12(5): 161-170. 1175-1180.
[14] XIAO L (肖玲), BEN W W (贲伟伟). Preparation and adsorption [20] DUPONT L, GUILLON E. Removal of hexavalent chromium with a
properties of chitosan immobilized tannin microspheres[J]. Fine lignocellulosic substrate extracted from wheat bran[J].
Chemicals (精细化工), 2006, 23(8): 733-737. Environmental Science and Technology, 2003, 37(18): 4235-4241.
[15] HUANG X, LIAO X P, SHI B. Hg(Ⅱ) removal from aqueous [21] DONGHEE P, SEONG R L, YEOUNG S Y, et al. Reliable evidences
solution by bayberry tannin-immobilized collagen fiber[J]. Journal of that the removal mechanism of hexavalent chromium by natural
Hazardous Materials, 2009, 170: 1141-1148. biomaterials is adsorption-coupled reduction[J]. Chemosphere, 2007,
[16] HOU X (侯旭), LIAO X P (廖学品), SHI B (石碧). Redox 70: 298-30.
adsorption of Cr( Ⅵ ) by in situ immobilized larch tannin[J]. [22] LI K B, ZHANG Y H, DANG Y, et al. Removal of Cr(Ⅵ) from
Chemistry and Industry of Forest Products (林产化学与工业), 2007, aqueous solutions using buckwheat(Fagopyrum esculentum Moench)
27(6): 1-7. hull through adsorption-reduction: Affecting factors, isotherm, and
[17] HOU X (侯旭), LIAO X P (廖学品), SHI B (石碧). In situ mechanisms[J]. Clean-Soil, Air, Water, 2014, 42(11): 1549-1557.
immobilization of tannin of larix gmelini and its adsorption to [23] KOBYA M. Adsorption, kinetic and equilibrium studies of Cr(Ⅵ) by
Au(Ⅲ)[J]. Journal of Beijing Forestry University (北京林业大学学 hazelnut shell activated carbon[J]. Adsorption Science and Technology,
报), 2006, (1): 71-75. 2004, 22(1): 51-64.
[18] HAN C ( 韩超 ), SUN G J ( 孙国娟 ). Spectrophotometric [24] ZHU L L, LIU Y H, CHEN J. Synthesis of n-methylimidazolium
determination of hexavalent chromium in PCB waste water by functionalized strongly basic anion exchange resins for adsorption of
1,5-diphenylcarbonydrazide[J]. Chinese Journal of Inorganic Cr(Ⅵ)[J]. Industrial and Engineering Chemistry Research, 2009, 48:
Analytical Chemistry (中国无机分析化学), 2019, 9(4): 16-18. 3261-3267.
(上接第 742 页) hollow spheres with ZnO nanoparticles for modulating sensing
properties of formaldehyde[J]. Sensors and Actuators B: Chemical,
[16] MA J (马杰), PENG T J (彭同江), SUN H J (孙红娟), et al. 2017, 245: 359-368.
Preparation of rGO-SnO 2 nanocomposites and its NH 3 gas sensing [28] YU K L, HU J X, LI X H, et al. Camellia-like NiO: A novel
properties at room temperature[J]. Fine Chemicals (精细化工), 2020, cataluminescence sensing material for H 2S[J]. Sensors and Actuators
37(7): 1429-1437. B: Chemical, 2019, 288: 243-250.
[17] ROTHSCHILD A, KOMEM Y. The effect of grain size on the [29] GENG W C, GE S B, HE X W, et al. Volatile organic compound gas-
sensitivity of nanocrystalline metal-oxide gas sensors[J]. Journal of sensing properties of eimodalporous α-Fe 2O 3 with ultrahigh sensitivity
Applied Physics, 2004, 95(11): 6374-6380. and fast response[J]. Applied Materials & Interfaces, 2018, 10:
[18] ZENG S H, ZHANG W L, ŚLIWA M, et al. Comparative study of 13702-13711.
CeO 2/CuO and CuO/CeO 2 catalysts on catalytic performance for [30] LIDE D R. CRC handbook of chemistry and physics[M]. New York:
preferential CO oxidation[J]. International Journal of Hydrogen CRC Press, 2007, 257: 423.
Energy, 2013, 38(9): 3597-3605. [31] KIM J, LEE J, MIRZAEI A, et al. SnO 2 (n)-NiO (p) composite
[19] MA X J, LU P, WU P. Optical and ferromagnetic properties of nanowebs: Gas sensing properties and sensing mechanisms[J].
hydrothermally synthesized CeO 2/CuO nanocomposites[J]. Ceramics Sensors and Actuators B: Chemical, 2018, 258: 204-214.
International, 2018, 44(5): 5284-5290. [32] TOMIĆ M, ŠETKA M, CHMELA O, et al. Cerium oxide-tungsten
[20] BAQER A A, MATORI K A, AL-HADA N M, et al. Synthesis and oxide core-shell nanowire-based microsensors sensitive to acetone[J].
characterization of binary (CuO) 0.6(CeO 2) 0.4 nanoparticles via a simple Biosensors, 2018, 8(4): 116.
heat treatment method[J]. Results in Physics, 2018, 9: 471-478. [33] CHEN Y, ZHOU M M, DONG Z G, et al. Enhanced acetone detection
[21] SUN J H, SUN L X, HAN N, et al. rGO decorated CdS/CdO performance using facile CeO 2-SnO 2 nanosheets[J]. Applied Physics
composite for detection of low concentration NO 2[J]. Sensors and A, 2020, 126(1): 33.
Actuators B: Chemical, 2019, 299: 126832. [34] DIAO Q, YIN Y N, ZHANG X M, et al. Fabrication of ZnO@CeO 2
[22] SONG C X, ZHAO Z Y, LI H H, et al. CeO 2 decorated CuO core-shell hetero-structural nanofibers and enhanced gas sensing
hierarchical composites as inverse catalyst for enhanced CO oxidation performance for acetone[J]. Functional Materials Letters, 2020, 13(3):
[J]. RSC Advances, 2016, 6(105): 102931-102937. 2050013.
[23] YANG W L, LI D, XU D M, et al. Effect of CeO 2 preparation method [35] BAI S L, HAN J Y, HAN N. An α-Fe 2O 3/NiO p-n hierarchical
and Cu loading on CuO/CeO 2 catalysts for methane combustion[J]. heterojunction for the sensitive detection of triethylamine[J]. Inorganic
Journal of Natural Gas Chemistry, 2009, 18(4): 458-466. Chemistry Frontiers, 2020, 7:1532-1539.
[24] AMANIAMPONG P N, TRINH Q T, LI K X, et al. Porous structured [36] DEY A. Semiconductor metal oxide gas sensors: A review[J].
CuO-CeO 2 nanospheres for the direct oxidation of cellobiose and Materials Science and Engineering: B, 2018, 229: 206-217.
glucose to gluconic acid[J]. Catalysis Today, 2018, 306: 172-182. [37] ZHANG W H, ZHANG W D. Fabrication of SnO 2-ZnO nanocomposite
[25] CHEN G Z, XU Q H, YANG Y, et al. Facile and mild strategy to sensor for selective sensing of trimethylamine and the freshness of
construct mesoporous CeO 2-CuO nanorods with enhanced catalytic fishes[J]. Sensors and Actuators B: Chemical, 2008, 134(2): 403-408.
activity toward CO oxidation[J]. ACS Applied Materials & Interfaces, [38] SONG Z H, CHEN W G, ZHANG H, et al. Highly sensitive and
2015, 7(42): 23538-23544. selective acetylene sensors based on p-n heterojunction of NiO
[26] YANG S Q, ZHOU F, LIU Y J, et al. Morphology effect of ceria on nanoparticles on flower-like ZnO structures[J]. Ceramics International,
the performance of CuO/CeO 2 catalysts for hydrogen production by 2019, 45(16): 19635-19643.
methanol steam reforming[J]. International Journal of Hydrogen [39] JI H C, ZENG W, LI Y Q. Gas sensing mechanisms of metal oxide
Energy, 2019, 44(14): 7252-7261. semiconductors: A focus review[J]. Nanoscale, 2019, 11: 2664-
[27] BAI S L, GUO J, SHU X, et al. Surface functionalization of Co 3O 4 22684.