Page 211 - 《精细化工》2021年第4期
P. 211

第 4 期                   钟   鑫,等:  单宁基酚胺型螯合树脂的制备及对 Cr(Ⅵ)的吸附                               ·845·


                 118-126.                                      [19]  ZHANG G X (张恭孝), YANG R H (杨荣华), CHEN  Y X (陈玉
            [13]  SONG L J (宋立江), DI Y (狄莹), SHI B (石碧). The significance   新) , et al. Synthesis of 3-methylamino-1,2-propandiol catalyzed by
                 and development trend in research of plant polyphenols[J]. Progress   solid  base catalyst[J]. Fine Chemicals (精细化工), 2015, 32(10):
                 in Chemistry (化学进展), 2000, 12(5): 161-170.        1175-1180.
            [14]  XIAO L (肖玲), BEN W W (贲伟伟). Preparation and adsorption   [20]  DUPONT L, GUILLON E. Removal of hexavalent chromium with a
                 properties  of chitosan immobilized tannin microspheres[J]. Fine   lignocellulosic  substrate  extracted  from  wheat  bran[J].
                 Chemicals (精细化工), 2006, 23(8): 733-737.           Environmental Science and Technology, 2003, 37(18): 4235-4241.
            [15]  HUANG X, LIAO X P, SHI B. Hg(Ⅱ) removal from aqueous   [21]  DONGHEE P, SEONG R L, YEOUNG S Y, et al. Reliable evidences
                 solution by bayberry tannin-immobilized collagen fiber[J]. Journal of   that the removal  mechanism of hexavalent chromium  by natural
                 Hazardous Materials, 2009, 170: 1141-1148.        biomaterials is adsorption-coupled reduction[J]. Chemosphere, 2007,
            [16] HOU  X  (侯旭),  LIAO X P (廖学品), SHI B (石碧). Redox   70: 298-30.
                 adsorption of  Cr( Ⅵ ) by in situ  immobilized larch tannin[J].   [22]  LI K B,  ZHANG  Y H,  DANG Y,  et al. Removal of Cr(Ⅵ) from
                 Chemistry and Industry of Forest Products (林产化学与工业), 2007,   aqueous solutions using buckwheat(Fagopyrum esculentum Moench)
                 27(6): 1-7.                                       hull through adsorption-reduction: Affecting factors, isotherm, and
            [17]  HOU X (侯旭),  LIAO X P (廖学品), SHI B (石碧).  In situ   mechanisms[J]. Clean-Soil, Air, Water, 2014, 42(11): 1549-1557.
                 immobilization of tannin of larix  gmelini and its adsorption to   [23]  KOBYA M. Adsorption, kinetic and equilibrium studies of Cr(Ⅵ) by
                 Au(Ⅲ)[J]. Journal of Beijing Forestry University (北京林业大学学  hazelnut shell activated carbon[J]. Adsorption Science and Technology,
                 报), 2006, (1): 71-75.                             2004, 22(1): 51-64.
            [18]  HAN C ( 韩超 ), SUN G J ( 孙国娟 ). Spectrophotometric   [24]  ZHU  L L,  LIU  Y  H, CHEN J. Synthesis of  n-methylimidazolium
                 determination of hexavalent chromium in PCB waste  water by   functionalized strongly basic anion exchange resins for adsorption of
                 1,5-diphenylcarbonydrazide[J]. Chinese Journal  of Inorganic   Cr(Ⅵ)[J]. Industrial and Engineering Chemistry Research, 2009, 48:
                 Analytical Chemistry (中国无机分析化学), 2019, 9(4): 16-18.   3261-3267.


            (上接第 742 页)                                            hollow spheres with ZnO nanoparticles for modulating sensing
                                                                   properties of formaldehyde[J]. Sensors and Actuators B: Chemical,
            [16]  MA J (马杰), PENG T J (彭同江), SUN H J (孙红娟),  et al.   2017, 245: 359-368.
                 Preparation of  rGO-SnO 2  nanocomposites and its NH 3 gas sensing   [28]  YU K L,  HU  J X, LI  X  H,  et al. Camellia-like NiO: A novel
                 properties at room temperature[J]. Fine Chemicals (精细化工), 2020,   cataluminescence sensing material for H 2S[J]. Sensors and Actuators
                 37(7): 1429-1437.                                 B: Chemical, 2019, 288: 243-250.
            [17]  ROTHSCHILD A, KOMEM Y. The effect of grain  size on the   [29]  GENG W C, GE S B, HE X W, et al. Volatile organic compound gas-
                 sensitivity of nanocrystalline metal-oxide gas sensors[J]. Journal of   sensing properties of eimodalporous α-Fe 2O 3 with ultrahigh sensitivity
                 Applied Physics, 2004, 95(11): 6374-6380.         and fast  response[J]. Applied Materials & Interfaces,  2018, 10:
            [18]  ZENG S H, ZHANG W L, ŚLIWA M, et al. Comparative study of   13702-13711.
                 CeO 2/CuO and CuO/CeO 2 catalysts on catalytic performance for   [30]  LIDE D R. CRC handbook of chemistry and physics[M]. New York:
                 preferential CO oxidation[J]. International Journal of Hydrogen   CRC Press, 2007, 257: 423.
                 Energy, 2013, 38(9): 3597-3605.               [31]  KIM J, LEE J, MIRZAEI A,  et al. SnO 2 (n)-NiO (p) composite
            [19]  MA X J, LU P,  WU P. Optical  and ferromagnetic properties of   nanowebs: Gas sensing properties and sensing mechanisms[J].
                 hydrothermally synthesized CeO 2/CuO nanocomposites[J]. Ceramics   Sensors and Actuators B: Chemical, 2018, 258: 204-214.
                 International, 2018, 44(5): 5284-5290.        [32] TOMIĆ M, ŠETKA M, CHMELA O, et al. Cerium oxide-tungsten
            [20]  BAQER A A, MATORI K A, AL-HADA N M, et al. Synthesis and   oxide core-shell nanowire-based microsensors sensitive to acetone[J].
                 characterization of binary (CuO) 0.6(CeO 2) 0.4 nanoparticles via a simple   Biosensors, 2018, 8(4): 116.
                 heat treatment method[J]. Results in Physics, 2018, 9: 471-478.   [33]  CHEN Y, ZHOU M M, DONG Z G, et al. Enhanced acetone detection
            [21]  SUN J H, SUN L X,  HAN  N,  et al. rGO decorated  CdS/CdO   performance using facile CeO 2-SnO 2 nanosheets[J]. Applied Physics
                 composite for detection of low concentration NO 2[J]. Sensors and   A, 2020, 126(1): 33.
                 Actuators B: Chemical, 2019, 299: 126832.     [34]  DIAO Q, YIN Y N, ZHANG X M, et al. Fabrication of ZnO@CeO 2
            [22]  SONG C X, ZHAO Z Y, LI H  H,  et al. CeO 2 decorated CuO   core-shell  hetero-structural nanofibers and enhanced  gas sensing
                 hierarchical composites as inverse catalyst for enhanced CO oxidation   performance for acetone[J]. Functional Materials Letters, 2020, 13(3):
                 [J]. RSC Advances, 2016, 6(105): 102931-102937.   2050013.
            [23]  YANG W L, LI D, XU D M, et al. Effect of CeO 2 preparation method   [35]  BAI S L, HAN J  Y,  HAN N. An  α-Fe 2O 3/NiO  p-n hierarchical
                 and Cu loading on CuO/CeO 2 catalysts for methane combustion[J].   heterojunction for the sensitive detection of triethylamine[J]. Inorganic
                 Journal of Natural Gas Chemistry, 2009, 18(4): 458-466.   Chemistry Frontiers, 2020, 7:1532-1539.
            [24]  AMANIAMPONG P N, TRINH Q T, LI K X, et al. Porous structured   [36]  DEY A. Semiconductor metal oxide gas sensors: A review[J].
                 CuO-CeO 2  nanospheres for the direct oxidation of cellobiose and   Materials Science and Engineering: B, 2018, 229: 206-217.
                 glucose to gluconic acid[J]. Catalysis Today, 2018, 306: 172-182.   [37]  ZHANG W H, ZHANG W D. Fabrication of SnO 2-ZnO nanocomposite
            [25]  CHEN G Z, XU Q H, YANG Y, et al. Facile and mild strategy to   sensor for selective sensing of trimethylamine and the freshness of
                 construct mesoporous CeO 2-CuO nanorods with enhanced catalytic   fishes[J]. Sensors and Actuators B: Chemical, 2008, 134(2): 403-408.
                 activity toward CO oxidation[J]. ACS Applied Materials & Interfaces,   [38]  SONG Z H, CHEN W G, ZHANG  H,  et al. Highly sensitive and
                 2015, 7(42): 23538-23544.                         selective acetylene sensors based on  p-n heterojunction of NiO
            [26]  YANG S Q, ZHOU F, LIU Y J, et al. Morphology effect of ceria on   nanoparticles on flower-like ZnO structures[J]. Ceramics International,
                 the performance of CuO/CeO 2 catalysts for hydrogen production by   2019, 45(16): 19635-19643.
                 methanol steam reforming[J]. International Journal of  Hydrogen   [39]  JI H C, ZENG W, LI Y Q. Gas sensing mechanisms of metal oxide
                 Energy, 2019, 44(14): 7252-7261.                  semiconductors: A focus review[J]. Nanoscale, 2019,  11: 2664-
            [27]  BAI S L, GUO J, SHU X, et al. Surface functionalization of Co 3O 4   22684.
   206   207   208   209   210   211   212   213   214   215   216