Page 27 - 《精细化工》2021年第4期
P. 27
第 4 期 郭茹月,等: 二维导电材料/柔性聚合物复合材料基可穿戴压阻式应变传感器的研究进展 ·661·
[48] SACHDEVA S, SOCCOL D, GRAVESTEIJIN D J, et al. Polymer- [67] ZHAO J P, PEI S F, REN W C, et al. Efficient preparation of
metal organic framework composite films as affinity layer for large-area graphene oxide sheets for transparent conductive films[J].
capacitive sensor devices[J]. ACS Sensors, 2016, 1(10): 1188-1192. ACS Nano, 2010, 4(9): 5245-5252.
[49] HA M, LIM S, CHO S, et al. Skin-inspired hierarchical polymer [68] WU Z S, REN W C, GAO L B, et al. Synthesis of high-quality
architectures with gradient stiffness for spacer-free, ultrathin, and graphene with a pre-determined number of layers[J]. Carbon, 2009,
highly sensitive triboelectric sensors[J]. ACS Nano, 2018, 12(4): 47(2): 493-499.
3964-3974. [69] EDA G, FANCHINI G, CHHOWALLA M, et al. Large-area ultrathin
[50] GONG S, LAI D T H, SU B, et al. Highly stretchy black gold E-skin films of reduced graphene oxide as a transparent and flexible
nanopatches as highly sensitive wearable biomedical sensors[J]. electronic material[J]. Nature Nanotechnology, 2008, 3(5): 270-274.
Advanced Electronic Materials, 2015, 1(4): 1400063. [70] WANG X, ZHI L J, MULLEN K. Transparent, conductive graphene
[51] CAI Y C, SHEN J, GE G, et al. Stretchable Ti 3C 2T x MXene/carbon electrodes for dye-sensitized solar cells[J]. Nano Letters, 2008, 8(1):
nanotube composite based strain sensor with ultrahigh sensitivity and 323-327.
tunable sensing range[J]. ACS Nano, 2018, 12(1): 56-62. [71] LOPEZ V, SUNDARAM R S, GOMEZ-NAVARRO C, et al.
[52] SHI X L, WANG H K, XIE X T, et al. Bioinspired ultrasensitive and Chemical vapor deposition repair of graphene oxide: A route to
stretchable MXene-based strain sensor via nacre-mimetic microscale highly-conductive graphene monolayers[J]. Advanced Materials,
“brick-and-mortar” architecture[J]. ACS Nano, 2018, 13(1): 649-659. 2009, 21(46): 4683-4686.
[53] YANG Y N, SHI L J, CAO Z R, et al. Strain sensors with a high [72] GEORGIOU T, JALIL R, BELLE B D, et al. Vertical field-effect
sensitivity and a wide sensing range based on a Ti 3C 2T x (MXene) transistor based on graphene-WS 2 heterostructures for flexible and
nanoparticle-nanosheet hybrid network[J]. Advanced Functional transparent electronics[J]. Nature nanotechnology, 2013, 8(2): 100-103.
Materials, 2019, 29(14): 1807882. [73] EL-KADY M F, STRONG V, DUBIN S, et al. Laser scribing of
[54] MA J H, WANG P, CHEN H Y, et al. Highly sensitive and high-performance and flexible graphene-based electrochemical
large-range strain sensor with a self-compensated two-order structure capacitors[J]. Science, 2012, 335(6074): 1326-1330.
for human motion detection[J]. ACS Applied Materials & Interfaces, [74] SADASIVUNI K K, KAFY A, ZHAI L D, et al. Transparent and
2019, 11(8): 8527-8536. flexible cellulose nanocrystal/reduced graphene oxide film for
[55] LIN Y, LIU S Q, CHEN S, et al. A highly stretchable and sensitive proximity sensing[J]. Small, 2015, 11(8): 994-1002.
strain sensor based on graphene-elastomer composites with a novel [75] NAGUIB M, MOCHALIN V N, BARSOUM M W, et al. 25th
double-interconnected network[J]. Journal of Materials Chemistry C, anniversary article: MXenes: A new family of two-dimensional
2016, 4(26): 6345-6352. materials[J]. Advanced Materials, 2014, 26(7): 992-1005.
[56] MENG X Y, ZHAO S F, ZHANG Z, et al. Nacre-inspired highly [76] MA Y N, LIU N S, LI L Y, et al. A highly flexible and sensitive
stretchable piezoresistive Cu-Ag nanowire/graphene synergistic piezoresistive sensor based on MXene with greatly changed interlayer
conductive networks for strain sensors and beyond[J]. Journal of distances[J]. Nature Communications, 2017, 8(1): 1-8.
Materials Chemistry C, 2019, 7(23): 7061-7072. [77] ZHANG Y J, ZHOU Z J, LAN J H, et al. Prediction of Ti 3C 2O 2
[57] SHI X L, LIU S R, SUN Y, et al. Lowering internal friction of MXene as an effective capturer of formaldehyde[J]. Applied Surface
0D-1D-2D ternary nanocomposite-based strain sensor by fullerene to Science, 2019, 469: 770-774.
boost the sensing performance[J]. Advanced Functional Materials, [78] LU Y, QU X Y, ZHAO W, et al. Highly stretchable, elastic, and
2018, 28(22): 1800850. sensitive MXene-based hydrogel for flexible strain and pressure
[58] WANG Y M, WANG Y, YANG Y. Graphene-polymer nanocomposite sensors[J]. Research, 2020, (11):1-13.
based redox-induced electricity for flexible self-powered strain sensors[J]. [79] ZHANG R, YING C, GAO H, et al. Highly flexible strain sensors
Advanced Energy Materials, 2018, 8(22): 1800961. based on polydimethylsiloxane/carbon nanotubes (CNTs) prepared
[59] CARVALHO A F, FERNANDES A J S, LEITAO C, et al. Laser- by a swelling/permeating method and enhanced sensitivity by CNTs
induced graphene strain sensors produced by ultraviolet irradiation of surface modification[J]. Composites Science and Technology, 2019,
polyimide[J] Advanced Functional Materials, 2018, 28(52): 1805271. 171: 218-225.
[60] LIU Q, CHEN J, LI Y R, et al. High-performance strain sensors with [80] HU H L, LI S Q, YING C, et al. Hydrophilic PDMS with a
fish-scale-like graphene-sensing layers for full-range detection of sandwich-like structure and no loss of mechanical properties and
human motions[J]. ACS Nano, 2016, 10(8): 7901-7906. optical transparency[J]. Applied Surface Science, 2020, 503(15):
[61] WANG Y L, HAO J, HUANG Z Q, et al. Flexible electrically 144126.
resistive-type strain sensors based on reduced graphene oxide- [81] GAO H Y, LIU H J, SONG C Z, et al. Infusion of graphene in natural
decorated electrospun polymer fibrous mats for human motion rubber matrix to prepare conductive rubber by ultrasound-assisted
monitoring[J]. Carbon, 2018, 126: 360-371. supercritical CO 2 method[J]. Chemical Engineering Journal, 2019,
[62] QIAO Y C, WANG Y F, TIAN H, et al. Multilayer graphene 368(15): 1013-1021.
epidermal electronic skin[J]. ACS Nano, 2018, 12(9): 8839-8846. [82] COSTA P, MACEIRAS A, SAN S M, et al. On the use of surfactants
[63] COSKUN M B, AKBARI A, LAI D T H, et al. Ultrasensitive strain for improving nanofiller dispersion and piezoresistive response in
sensor produced by direct patterning of liquid crystals of graphene stretchable polymer composites[J]. Journal of Materials Chemistry C,
oxide on a flexible substrate[J]. ACS Applied Materials & Interfaces, 2018, 6(39): 10580-10588.
2016, 8(34): 22501-22505. [83] LIAO K H, QIAN Y, MACOSKO C W. Ultralow percolation
[64] HAN J, LEE J Y, LEE J, et al. Highly stretchable and reliable, graphene/polyurethane acrylate nanocomposites[J]. Polymer, 2012,
transparent and conductive entangled graphene mesh networks[J]. 53(17): 3756-3761.
Advanced Materials, 2018, 30(3): 1704626. [84] STANKOVICH S, DIKIN D A, DOMMETT G H B, et al.
[65] ZHANG R, LI S Q, YING C, et al. Bioinspired design of flexible Graphene-based composite materials[J]. Nature, 2006, 442(7100):
strain sensor with high performance based on gradient filler 282-286.
distributions[J]. Composites Science and Technology, 2020, 200(10): [85] OH J Y, JUN G H, JIN S, et al. Enhanced electrical networks of
108319. stretchable conductors with small fraction of carbon nanotube/
[66] XIE G Q, CHENG J, LI Y F, et al. Fluorescent graphene oxide graphene hybrid fillers[J]. ACS Applied Materials & Interfaces,
composites synthesis and its biocompatibility study[J]. Journal of 2016, 8(5): 3319-3325.
Materials Chemistry, 2012, 22(18): 9308-9314. (下转第 859 页)