Page 27 - 《精细化工》2021年第4期
P. 27

第 4 期          郭茹月,等:  二维导电材料/柔性聚合物复合材料基可穿戴压阻式应变传感器的研究进展                                 ·661·


            [48]  SACHDEVA S, SOCCOL D, GRAVESTEIJIN D J, et al. Polymer-   [67]  ZHAO J P, PEI S F, REN W  C,  et al. Efficient preparation of
                 metal organic  framework composite films as affinity layer for   large-area graphene oxide sheets for transparent conductive films[J].
                 capacitive sensor devices[J]. ACS Sensors, 2016, 1(10): 1188-1192.   ACS Nano, 2010, 4(9): 5245-5252.
            [49]  HA M, LIM S, CHO S,  et al. Skin-inspired  hierarchical polymer   [68]  WU Z S, REN W C, GAO  L B,  et al.  Synthesis of high-quality
                 architectures with  gradient stiffness  for spacer-free, ultrathin, and   graphene with a pre-determined number of layers[J]. Carbon, 2009,
                 highly sensitive triboelectric sensors[J].  ACS Nano, 2018, 12(4):   47(2): 493-499.
                 3964-3974.                                    [69]  EDA G, FANCHINI G, CHHOWALLA M, et al. Large-area ultrathin
            [50]  GONG S, LAI D T H, SU B, et al. Highly stretchy black gold E-skin   films of reduced  graphene  oxide as a transparent and flexible
                 nanopatches as highly sensitive wearable biomedical sensors[J].   electronic material[J]. Nature Nanotechnology, 2008, 3(5): 270-274.
                 Advanced Electronic Materials, 2015, 1(4): 1400063.   [70]  WANG X, ZHI L J, MULLEN K. Transparent, conductive graphene
            [51]  CAI Y C, SHEN J, GE G, et al. Stretchable Ti 3C 2T x MXene/carbon   electrodes for dye-sensitized solar cells[J]. Nano Letters, 2008, 8(1):
                 nanotube composite based strain sensor with ultrahigh sensitivity and   323-327.
                 tunable sensing range[J]. ACS Nano, 2018, 12(1): 56-62.   [71]  LOPEZ V, SUNDARAM  R S, GOMEZ-NAVARRO  C,  et al.
            [52]  SHI X L, WANG H K, XIE X T, et al. Bioinspired ultrasensitive and   Chemical  vapor  deposition repair of graphene oxide: A  route  to
                 stretchable MXene-based strain sensor via nacre-mimetic microscale   highly-conductive graphene monolayers[J]. Advanced Materials,
                 “brick-and-mortar” architecture[J]. ACS Nano, 2018, 13(1): 649-659.   2009, 21(46): 4683-4686.
            [53]  YANG Y N, SHI  L J, CAO  Z  R,  et al. Strain sensors with a high   [72]  GEORGIOU T, JALIL R, BELLE  B  D,  et al. Vertical field-effect
                 sensitivity and a wide sensing range  based on a Ti 3C 2T x (MXene)   transistor based on graphene-WS 2 heterostructures for flexible and
                 nanoparticle-nanosheet hybrid network[J]. Advanced Functional   transparent electronics[J]. Nature nanotechnology, 2013, 8(2): 100-103.
                 Materials, 2019, 29(14): 1807882.             [73]  EL-KADY M F, STRONG V, DUBIN S,  et al.  Laser scribing of
            [54]  MA J  H,  WANG P, CHEN H Y,  et al. Highly sensitive and   high-performance  and flexible graphene-based electrochemical
                 large-range strain sensor with a self-compensated two-order structure   capacitors[J]. Science, 2012, 335(6074): 1326-1330.
                 for human motion detection[J]. ACS Applied Materials & Interfaces,   [74]  SADASIVUNI K K, KAFY  A, ZHAI L D,  et al. Transparent and
                 2019, 11(8): 8527-8536.                           flexible cellulose nanocrystal/reduced graphene oxide film for
            [55]  LIN Y, LIU S Q, CHEN S, et al. A highly stretchable and sensitive   proximity sensing[J]. Small, 2015, 11(8): 994-1002.
                 strain sensor based on graphene-elastomer composites with a novel   [75]  NAGUIB M,  MOCHALIN V N, BARSOUM M W,  et al. 25th
                 double-interconnected network[J]. Journal of Materials Chemistry C,   anniversary article: MXenes: A new family of two-dimensional
                 2016, 4(26): 6345-6352.                           materials[J]. Advanced Materials, 2014, 26(7): 992-1005.
            [56]  MENG X  Y,  ZHAO S F, ZHANG Z,  et al. Nacre-inspired highly   [76]  MA  Y N, LIU N  S, LI L Y,  et al.  A highly flexible and sensitive
                 stretchable piezoresistive Cu-Ag nanowire/graphene synergistic   piezoresistive sensor based  on MXene  with  greatly changed interlayer
                 conductive networks for strain sensors and beyond[J]. Journal of   distances[J]. Nature Communications, 2017, 8(1): 1-8.
                 Materials Chemistry C, 2019, 7(23): 7061-7072.   [77]  ZHANG Y J, ZHOU Z J, LAN J H,  et al. Prediction  of Ti 3C 2O 2
            [57]  SHI X L, LIU S R, SUN Y,  et al.  Lowering internal  friction of   MXene as an effective capturer of formaldehyde[J]. Applied Surface
                 0D-1D-2D ternary nanocomposite-based strain sensor by fullerene to   Science, 2019, 469: 770-774.
                 boost the sensing  performance[J]. Advanced Functional Materials,   [78]  LU Y,  QU X Y,  ZHAO W,  et al. Highly stretchable, elastic, and
                 2018, 28(22): 1800850.                            sensitive MXene-based hydrogel for flexible strain and pressure
            [58]  WANG Y M, WANG Y, YANG Y. Graphene-polymer nanocomposite   sensors[J]. Research, 2020, (11):1-13.
                 based redox-induced electricity for flexible self-powered strain sensors[J].   [79]  ZHANG R, YING C, GAO H, et al. Highly flexible strain sensors
                 Advanced Energy Materials, 2018, 8(22): 1800961.   based on polydimethylsiloxane/carbon nanotubes  (CNTs) prepared
            [59]  CARVALHO A F,  FERNANDES A J S, LEITAO C,  et al. Laser-   by a swelling/permeating method and enhanced sensitivity by CNTs
                 induced graphene strain sensors produced by ultraviolet irradiation of   surface modification[J]. Composites Science and Technology, 2019,
                 polyimide[J] Advanced Functional Materials, 2018, 28(52): 1805271.   171: 218-225.
            [60]  LIU Q, CHEN J, LI Y R, et al. High-performance strain sensors with   [80]  HU H L, LI S Q,  YING  C,  et al. Hydrophilic PDMS with a
                 fish-scale-like  graphene-sensing layers for full-range detection of   sandwich-like structure and no loss  of mechanical properties and
                 human motions[J]. ACS Nano, 2016, 10(8): 7901-7906.   optical transparency[J]. Applied Surface Science, 2020, 503(15):
            [61]  WANG Y L,  HAO J, HUANG Z  Q,  et al. Flexible electrically   144126.
                 resistive-type strain sensors based  on reduced graphene oxide-   [81]  GAO H Y, LIU H J, SONG C Z, et al. Infusion of graphene in natural
                 decorated electrospun  polymer fibrous mats for human motion   rubber matrix to prepare conductive rubber by ultrasound-assisted
                 monitoring[J]. Carbon, 2018, 126: 360-371.        supercritical CO 2 method[J]. Chemical Engineering Journal, 2019,
            [62]  QIAO Y C, WANG Y F, TIAN H,  et al. Multilayer graphene   368(15): 1013-1021.
                 epidermal electronic skin[J]. ACS Nano, 2018, 12(9): 8839-8846.   [82]  COSTA P, MACEIRAS A, SAN S M, et al. On the use of surfactants
            [63]  COSKUN M B, AKBARI A, LAI D T H, et al. Ultrasensitive strain   for improving  nanofiller dispersion and piezoresistive response in
                 sensor produced by direct patterning of liquid crystals of graphene   stretchable polymer composites[J]. Journal of Materials Chemistry C,
                 oxide on a flexible substrate[J]. ACS Applied Materials & Interfaces,   2018, 6(39): 10580-10588.
                 2016, 8(34): 22501-22505.                     [83]  LIAO K H,  QIAN Y, MACOSKO C  W. Ultralow  percolation
            [64]  HAN J, LEE J Y, LEE J,  et al. Highly stretchable and reliable,   graphene/polyurethane acrylate nanocomposites[J]. Polymer, 2012,
                 transparent and conductive entangled graphene  mesh networks[J].   53(17): 3756-3761.
                 Advanced Materials, 2018, 30(3): 1704626.     [84]  STANKOVICH S, DIKIN  D  A,  DOMMETT G H  B,  et al.
            [65]  ZHANG  R, LI S Q, YING C,  et al. Bioinspired design of flexible   Graphene-based composite materials[J]. Nature, 2006,  442(7100):
                 strain sensor with high performance based on gradient filler   282-286.
                 distributions[J]. Composites Science and Technology, 2020, 200(10):   [85]  OH J  Y, JUN  G H, JIN S,  et al. Enhanced electrical networks of
                 108319.                                           stretchable conductors with  small fraction of carbon  nanotube/
            [66]  XIE G Q, CHENG J,  LI Y F,  et al. Fluorescent graphene oxide   graphene hybrid fillers[J]. ACS Applied Materials & Interfaces,
                 composites synthesis and its biocompatibility study[J]. Journal of   2016, 8(5): 3319-3325.
                 Materials Chemistry, 2012, 22(18): 9308-9314.                                (下转第 859 页)
   22   23   24   25   26   27   28   29   30   31   32