Page 26 - 《精细化工》2021年第4期
P. 26
·660· 精细化工 FINE CHEMICALS 第 38 卷
[7] BARLIAN A A, PARK W T, MALLON J R, et al. Semiconductor super-hydrophobic strain sensor based on polydopamine and graphene
piezoresistance for microsystems[J]. Proceedings of the IEEE, 2009, reinforced nanofiber composite for human motion monitoring[J].
97(3): 513-552. Composites Part B: Engineering, 2020, 181(15): 107580.
[8] WANG F, LIU S, SHU L, et al. Low-dimensional carbon based [29] LIAO H, GUO X L, WAN P B, et al. Conductive MXene
sensors and sensing network for wearable health and environmental nanocomposite organohydrogel for flexible, healable, low-temperature
monitoring[J]. Carbon, 2017, (121): 353-367. tolerant strain sensors[J]. Advanced Functional Materials, 2019,
[9] STOPPA M, CHIOLERIO A. Wearable electronics and smart textiles: 29(39): 1904507.
A critical review[J]. Sensors, 2014, 14(7): 11957-11992. [30] WU X X, LIAO H, MA D, et al. A wearable, self-adhesive,
[10] AMJADI M, KYUNG K U, PARK I, et al. Stretchable, skin- long-lastingly moist and healable epidermal sensor assembled from
mountable, and wearable strain sensors and their potential applications: conductive MXene nanocomposites[J]. Journal of Materials Chemistry C,
A review[J]. Advanced Functional Materials, 2016, 26(11): 1678-1698. 2020, 8(5): 1788-1795.
[11] TRUNG T Q, LEE N E. Flexible and stretchable physical sensor [31] AN H, HABIB T, SHAH S, et al. Surface-agnostic highly stretchable
integrated platforms for wearable human-activity monitoringand personal and bendable conductive MXene multilayers[J]. Science Advances,
healthcare[J]. Advanced Materials, 2016, 28(22): 4338-4372. 2018, 4(3): eaaq0118.
[12] ZHANG Y, CUI C Q, YANG B, et al. Size-controllable copper [32] CHEN S, WEI Y, WEI S M, et al. Ultrasensitive cracking-assisted
nanomaterials for flexible printed electronics[J]. Journal of Materials strain sensors based on silver nanowires/graphene hybrid particles[J].
Science, 2018, 53(18): 12988-12995. ACS Applied Materials & Interfaces, 2016, 8(38): 25563-25570.
[13] GUO S Z, QIU K Y, MENG F B, et al. 3D printed stretchable tactile [33] LV J, KONG C C, YANG C, et al. Wearable, stable, highly sensitive
sensors[J]. Advanced Materials, 2017, 29(27): 1701218. hydrogel-graphene strain sensors[J]. Beilstein Journal of Nanotechnology,
[14] ZOU B H, CHEN Y Y, LIU Y H, et al. Repurposed leather with 2019, 10(1): 475-480.
sensing capabilities for multifunctional electronic skin[J]. Advanced [34] JIAN D W, WANG Y, LI B, et al. Flexible sandwich structural strain
Science, 2019, 6(3): 1801283. sensor based on silver nanowires decorated with self-healing
[15] YUE Y, LIU N S, LIU W J, et al. 3D hybrid porous MXene-sponge substrate[J]. Macromolecular Materials and Engineering, 2019,
network and its application in piezoresistive sensor[J]. Nano Energy, 304(7): 1900074.
2018, 50: 79-87. [35] ALAMUS I, HU N, FUKUNAGA H, et al. Piezoresistive strain
[16] LEE H, GLASPER M J, LI X D, et al. Preparation of fabric strain sensors made from carbon nanotubes based polymer nanocomposites[J].
sensor based on graphene for human motion monitoring[J]. Journal Sensors, 2011, 11: 10691-10723.
of Materials Science, 2018, 53(12): 9026-9033. [36] DESAI A V, HAQUE M A. Mechanics of the interface for carbon
[17] LIU H, LI Y L, DAI K, et al. Electrically conductive thermoplastic nanotube-polymer composites[J]. Thin-Walled Structures, 2005,
elastomer nanocomposites at ultralow graphene loading levels for 43(11): 1787-1803.
strain sensor applications[J]. Journal of Materials Chemistry C, 2016, [37] WANG Y, WANG L, YANG T T, et al. Wearable and highly sensitive
4(1): 157-166. graphene strain sensors for human motion monitoring[J]. Advanced
[18] NANNI F, MAYORAL B, MADAU F, et al. Effect of MWCNT Functional Materials, 2014, 24(29): 4666-4670.
alignment on mechanical and self-monitoring properties of extruded [38] YAMADA T, HAYAMIZU Y, YAMAMOTO Y, et al. A stretchable
PET-MWCNT nanocomposites[J]. Composites Science and Technology, carbon nanotube strain sensor for human-motion detection[J]. Nature
2012, 72(10): 1140-1146. Nanotechnology, 2011, 6(5): 296-301.
[19] WU S Y, ZHANG J, LADANI R B, et al. Novel electrically [39] PARK D W, KIM B S, PARK S, et al. Bipolar strain sensor based on
conductive porous PDMS/carbon nanofiber composites for deformable an ultra-thin film of single-walled carbon nanotubes[J]. Journal of the
strain sensors and conductors[J]. ACS Applied Materials & Interfaces, Korean Physical Society, 2014, 64(3): 488-491.
2017, 9(16): 14207-14215. [40] YANG Y N, CAO Z R, HE P, et al. Ti 3C 2T x MXene-graphene
[20] RAHIMI R, OCHOA M, YU W Y, et al. Highly stretchable and composite films for wearable strain sensors featured with high
sensitive unidirectional strain sensor via laser carbonization[J]. ACS sensitivity and large range of linear response[J]. Nano Energy, 2019,
Applied Materials & Interfaces, 2015, 7(8): 4463-4470. 66: 104134.
[21] ROCHA J G, PALEO A J, VANHATTUM F W, et al. Polypropylene- [41] SIMMONS J G. Electric tunnel effect between dissimilar electrodes
carbon nanofiber composites as strain-gauge sensor[J]. IEEE Sensors separated by a thin insulating film[J]. Journal of Applied Physics,
Journal, 2013, 13(7): 2603-2609. 1963, 34(9): 2581-2590.
[22] QIN Y Y, PENG Q Y, DING Y J, et al. Lightweight, superelastic, and [42] CHEN L, CHEN G H, LU L. Piezoresistive behavior study on
mechanically flexible graphene/polyimide nanocomposite foam for finger-sensing silicone rubber/graphite nanosheet nanocomposites[J].
strain sensor application[J]. ACS Nano, 2015, 9(9): 8933-8941. Advanced Functional Materials, 2007, 17(6): 898-904.
[23] ZHANG R, DENG H, VALENCA R, et al. Strain sensing behaviour [43] YANG Y F, TAO L Q, PANG Y, et al. An ultrasensitive strain sensor
of elastomeric composite films containing carbon nanotubes under with a wide strain range based on graphene armour scales[J].
cyclic loading[J]. Composites Science and Technology, 2013, 74(24): 1-5. Nanoscale, 2018, 10(24):11524-11530.
[24] BOLAND C S, KHAN U, BACKES C, et al. Sensitive, high-strain, [44] MCGRATH M J, SCANAILL C, NAFUS D. Sensor technologies:
high-rate bodily motion sensors based on graphene-rubber composites[J]. Healthcare, wellness, and environmental applications[M]. Berlin:
ACS Nano, 2014, 8(9): 8819-8830. Springer Nature, 2013: 15-51.
[25] HU N, ITOI T, AKAGI T, et al. Ultrasensitive strain sensors made [45] FIORILLO A S, CRITELLO C D, PULLANO S A. Theory,
from metal-coated carbon nanofiller/epoxy composites[J]. Carbon, technology and applications of piezoresistive sensors: A review[J].
2013, 51: 202-212. Sensors and Actuators A: Physical, 2018, 281(1): 156-175.
[26] CHEN J W, YU Q L, CUI X H, et al. An overview of stretchable [46] SUN J C, ZHANG X W, LANG Y Y, et al. Piezo-phototronic effect
strain sensors from conductive polymer nanocomposites[J]. Journal improved performance of n-ZnO nano-arrays/p-Cu 2O film based
of Materials Chemistry C, 2019, 7(38): 11710-11730. pressure sensor synthesized on flexible Cu foil[J]. Nano Energy,
[27] YANG K, YIN F X, XIA D, et al. A highly flexible and 2017, 32: 96-104.
multifunctional strain sensor based on a network-structured MXene/ [47] LUO C, LIU N S, ZHANG H, et al. A new approach for
polyurethane mat with ultra-high sensitivity and a broad sensing ultrahigh-performance piezoresistive sensor based on wrinkled PPy
range[J]. Nanoscale, 2019, 11(20): 9949-9957. film with electrospun PVA nanowires as spacer[J]. Nano Energy, 2017,
[28] LI B, LUO J C, HUANG X W, et al. A highly stretchable, 41: 527-534.