Page 26 - 《精细化工》2021年第4期
P. 26

·660·                             精细化工   FINE CHEMICALS                                 第 38 卷

            [7]   BARLIAN A A, PARK W T, MALLON J R, et al. Semiconductor   super-hydrophobic strain sensor based on polydopamine and graphene
                 piezoresistance for microsystems[J]. Proceedings of the IEEE, 2009,   reinforced nanofiber composite for human  motion monitoring[J].
                 97(3): 513-552.                                   Composites Part B: Engineering, 2020, 181(15): 107580.
            [8]   WANG F, LIU S, SHU L,  et al. Low-dimensional carbon based   [29]  LIAO H, GUO X L, WAN P B,  et al. Conductive MXene
                 sensors and sensing network for wearable health and environmental   nanocomposite organohydrogel  for flexible, healable,  low-temperature
                 monitoring[J]. Carbon, 2017, (121): 353-367.      tolerant  strain sensors[J].  Advanced Functional Materials, 2019,
            [9]   STOPPA M, CHIOLERIO A. Wearable electronics and smart textiles:   29(39): 1904507.
                 A critical review[J]. Sensors, 2014, 14(7): 11957-11992.   [30]  WU X X, LIAO H, MA D,  et al. A wearable, self-adhesive,
            [10]  AMJADI M, KYUNG  K  U, PARK I,  et al. Stretchable, skin-   long-lastingly moist and healable epidermal sensor assembled from
                 mountable, and wearable strain sensors and their potential applications:   conductive MXene nanocomposites[J]. Journal of Materials Chemistry C,
                 A review[J]. Advanced Functional Materials, 2016, 26(11): 1678-1698.   2020, 8(5): 1788-1795.
            [11]  TRUNG T Q, LEE N E. Flexible and  stretchable physical sensor   [31]  AN H, HABIB T, SHAH S, et al. Surface-agnostic highly stretchable
                 integrated platforms for wearable human-activity monitoringand personal   and bendable conductive MXene  multilayers[J]. Science  Advances,
                 healthcare[J]. Advanced Materials, 2016, 28(22): 4338-4372.   2018, 4(3): eaaq0118.
            [12]  ZHANG  Y, CUI C  Q, YANG  B,  et al. Size-controllable copper   [32]  CHEN S, WEI Y, WEI S M, et al. Ultrasensitive cracking-assisted
                 nanomaterials for flexible printed electronics[J]. Journal of Materials   strain sensors based on silver nanowires/graphene hybrid particles[J].
                 Science, 2018, 53(18): 12988-12995.               ACS Applied Materials & Interfaces, 2016, 8(38): 25563-25570.
            [13]  GUO S Z, QIU K Y, MENG F B, et al. 3D printed stretchable tactile   [33]  LV J, KONG C C, YANG C, et al. Wearable, stable, highly sensitive
                 sensors[J]. Advanced Materials, 2017, 29(27): 1701218.   hydrogel-graphene strain sensors[J]. Beilstein Journal of Nanotechnology,
            [14]  ZOU B  H, CHEN Y  Y, LIU Y H,  et al. Repurposed  leather with   2019, 10(1): 475-480.
                 sensing capabilities for multifunctional electronic skin[J]. Advanced   [34]  JIAN D W, WANG Y, LI B, et al. Flexible sandwich structural strain
                 Science, 2019, 6(3): 1801283.                     sensor  based on silver nanowires decorated  with self-healing
            [15]  YUE Y, LIU N S, LIU W J, et al. 3D hybrid porous MXene-sponge   substrate[J]. Macromolecular Materials and Engineering, 2019,
                 network and its application in piezoresistive sensor[J]. Nano Energy,   304(7): 1900074.
                 2018, 50: 79-87.                              [35]  ALAMUS I, HU  N, FUKUNAGA  H,  et al. Piezoresistive strain
            [16]  LEE H, GLASPER M J, LI X D, et al. Preparation of fabric strain   sensors made from carbon nanotubes based polymer nanocomposites[J].
                 sensor based on graphene for human motion monitoring[J]. Journal   Sensors, 2011, 11: 10691-10723.
                 of Materials Science, 2018, 53(12): 9026-9033.   [36]  DESAI A V,  HAQUE M A. Mechanics of the interface  for carbon
            [17]  LIU H, LI Y L, DAI K, et al. Electrically conductive thermoplastic   nanotube-polymer  composites[J]. Thin-Walled Structures, 2005,
                 elastomer nanocomposites at ultralow graphene loading  levels for   43(11): 1787-1803.
                 strain sensor applications[J]. Journal of Materials Chemistry C, 2016,   [37]  WANG Y, WANG L, YANG T T, et al. Wearable and highly sensitive
                 4(1): 157-166.                                    graphene strain sensors for human motion monitoring[J]. Advanced
            [18]  NANNI F, MAYORAL  B, MADAU  F,  et al. Effect of  MWCNT   Functional Materials, 2014, 24(29): 4666-4670.
                 alignment on mechanical and self-monitoring properties of extruded   [38]  YAMADA T, HAYAMIZU Y, YAMAMOTO Y, et al. A stretchable
                 PET-MWCNT nanocomposites[J]. Composites Science and Technology,   carbon nanotube strain sensor for human-motion detection[J]. Nature
                 2012, 72(10): 1140-1146.                          Nanotechnology, 2011, 6(5): 296-301.
            [19]  WU S Y, ZHANG J,  LADANI  R B,  et al. Novel  electrically   [39]  PARK D W, KIM B S, PARK S, et al. Bipolar strain sensor based on
                 conductive porous PDMS/carbon nanofiber  composites for deformable   an ultra-thin film of single-walled carbon nanotubes[J]. Journal of the
                 strain sensors and conductors[J]. ACS  Applied Materials & Interfaces,   Korean Physical Society, 2014, 64(3): 488-491.
                 2017, 9(16): 14207-14215.                     [40]  YANG Y N, CAO Z R, HE P,  et al. Ti 3C 2T x MXene-graphene
            [20]  RAHIMI R, OCHOA M,  YU W Y,  et al. Highly stretchable and   composite films for wearable strain sensors featured with high
                 sensitive unidirectional strain sensor via laser carbonization[J]. ACS   sensitivity and large range of linear response[J]. Nano Energy, 2019,
                 Applied Materials & Interfaces, 2015, 7(8): 4463-4470.   66: 104134.
            [21]  ROCHA J G, PALEO A J, VANHATTUM F W, et al. Polypropylene-   [41]  SIMMONS J G. Electric tunnel effect between dissimilar electrodes
                 carbon nanofiber composites as strain-gauge sensor[J]. IEEE Sensors   separated by a thin insulating film[J]. Journal of Applied Physics,
                 Journal, 2013, 13(7): 2603-2609.                  1963, 34(9): 2581-2590.
            [22]  QIN Y Y, PENG Q Y, DING Y J, et al. Lightweight, superelastic, and   [42]  CHEN L, CHEN G H, LU L. Piezoresistive  behavior  study  on
                 mechanically flexible graphene/polyimide nanocomposite foam for   finger-sensing silicone rubber/graphite nanosheet nanocomposites[J].
                 strain sensor application[J]. ACS Nano, 2015, 9(9): 8933-8941.   Advanced Functional Materials, 2007, 17(6): 898-904.
            [23]  ZHANG R, DENG H, VALENCA R, et al. Strain sensing behaviour   [43]  YANG Y F, TAO L Q, PANG Y, et al. An ultrasensitive strain sensor
                 of elastomeric composite films containing carbon nanotubes under   with a wide strain range based on graphene armour scales[J].
                 cyclic loading[J]. Composites Science and Technology, 2013, 74(24): 1-5.   Nanoscale, 2018, 10(24):11524-11530.
            [24]  BOLAND C S, KHAN U, BACKES C, et al. Sensitive, high-strain,   [44]  MCGRATH M J,  SCANAILL C, NAFUS D. Sensor technologies:
                 high-rate bodily motion sensors based on graphene-rubber composites[J].   Healthcare, wellness, and environmental applications[M]. Berlin:
                 ACS Nano, 2014, 8(9): 8819-8830.                  Springer Nature, 2013: 15-51.
            [25]  HU N, ITOI T, AKAGI T, et al. Ultrasensitive strain sensors made   [45]  FIORILLO A S,  CRITELLO  C D, PULLANO S A. Theory,
                 from metal-coated carbon nanofiller/epoxy composites[J]. Carbon,   technology and applications of piezoresistive sensors: A review[J].
                 2013, 51: 202-212.                                Sensors and Actuators A: Physical, 2018, 281(1): 156-175.
            [26]  CHEN J W, YU Q L, CUI X H, et al. An overview of stretchable   [46]  SUN J C, ZHANG X W, LANG Y Y, et al. Piezo-phototronic effect
                 strain sensors from conductive polymer nanocomposites[J]. Journal   improved performance of  n-ZnO nano-arrays/p-Cu 2O film based
                 of Materials Chemistry C, 2019, 7(38): 11710-11730.   pressure sensor synthesized on flexible Cu foil[J]. Nano Energy,
            [27]  YANG K, YIN  F X, XIA D,  et al. A highly flexible and   2017, 32: 96-104.
                 multifunctional strain sensor based on a network-structured MXene/   [47]  LUO C, LIU N  S, ZHANG  H,  et al. A new approach for
                 polyurethane mat  with ultra-high sensitivity and a broad sensing   ultrahigh-performance piezoresistive sensor based on wrinkled PPy
                 range[J]. Nanoscale, 2019, 11(20): 9949-9957.     film with electrospun PVA nanowires as spacer[J]. Nano Energy, 2017,
            [28]  LI B, LUO J C, HUANG X W,  et al. A highly stretchable,   41: 527-534.
   21   22   23   24   25   26   27   28   29   30   31