Page 167 - 《精细化工》2021年第7期
P. 167

第 7 期                      杨孟楠,等:  淀粉分子磁化修饰及其再生膜材料的制备                                   ·1449·


              4
            10  A/m 外加磁场作用后 MMS 受力取向补偿了成膜                          Nano, 2019, 13(4): 4843-4853.
            过程中体系的团聚情况,使力学性能得到改善,因                             [11]  SMITH P, LEMSTRA P J P. Ultra-high-strength polyethylene filaments
                                                                   by solution spinning/drawing[J]. Journal of Materials Science, 1980,
            此样品 5 比样品 4 的断裂伸长率提升 33.5%。然而,                         15(2): 505-514.
            薄膜强度并未在数量级上提高,这很可能是由于外                             [12]  LIU Y, QIN A,  TANG  B  Z. Polymerizations based on triple-bond
                                                                   building blocks[J]. Progress in Polymer Science, 2018, 78(3): 92-138.
            加磁场强度较弱导致。因此,未来可进一步增强磁                             [13]  QIN A, TANG L, LAM J W Y, et al. Metal-free click polymerization:
            场强度进行实验加以验证。                                           Synthesis and photonic properties of poly(aroyltriazole)s[J]. Advanced
                                                                   Functional Materials, 2009, 19(12): 1891-1900.
            3   结论                                             [14]  ZHAN F K, WANG R, YIN J J, et al. Facile solvothermal preparation
                                                                   of Fe 3O 4-Ag nanocomposite with excellent catalytic performance[J].
                                                                   RSC Advances, 2019, 9(2): 878-883.
                (1)以 HS 为原料,通过 CuAAC 点击化学法                     [15]  LUO  Y, ZHOU Z  K, YUE T L. Synthesis and characterization  of
            将淀粉分子还原性端与磁体纳米粒子以共价键连                                  nontoxic chitosan-coated Fe 3O 4 particles for patulin adsorption in a
            接。对合成中各产物进行表征,测试结果证明,成                                 juice-pH simulation aqueous[J]. Food Chemistry, 2017, 221(4):
                                                                   317-323.
            功合成具有良好磁性的 MMS。                                    [16]  ZHU R F,  LIU M M, HOU Y  Y,  et al. One-pot preparation  of
                (2)磁场诱导作用下 MMS 在体系中有序化程                            fluorine-free magnetic superhydrophobic particles for controllable
                                                                   liquid marbles and robust multifunctional coatings[J]. ACS Applied
            度提高,出现短程有序,降低了体系的混乱程度,促                                Materials &Interfaces, 2020, 12(14): 17004-17017.
            进氢键的形成,影响了再生淀粉膜的力学性能。当                             [17]  LIEBERT T, HANSCH C, HEINZE T.  Click chemistry with
                                    4
            MMS 含量为 15%时,4×10  A/m 磁场作用下得到的                        polysaccharides[J]. Macromolecular Rapid Communications, 2006,
                                                                   27(3): 208-213.
            再生淀粉膜较纯 CMS 膜断裂强度提升 88.3%,断裂                       [18]  SCHATZ C,  LOUGUET S,  LE M J,  et al. Polysaccharide-block-
            伸长率提升 49.5%。                                           polypeptide copolymer vesicles: Towards synthetic viral capsids[J].
                                                                   Angewandte Chemie International Edition, 2009, 48(14): 2572-2575.
                (3)本文提供一种从分子层面诱导取向,提高
                                                               [19]  SINGH M S, CHOWDHURY S, KOLEY S. Advances of azide-
            分子链规整程度,改善天然化工材料(例如:纤维                                 alkyne cycloaddition-click chemistry over the recent  decade[J].
            素、壳聚糖等)力学性能的方法。同时,通过强磁                                 Tetrahedron, 2016, 72(35): 5257-5283.
                                                               [20]  ROSTOVTSEV V  V, GREEN L G, FOKIN V V, et al. A stepwise
            场调控 MMS 取向结晶程度,进一步改善淀粉膜力                               huisgen cycloaddition process: Copper(Ⅰ)-catalyzed regioselective
            学性能。                                                   “ligation” of azides and terminal  alkynes[J]. Angewandte Chemie
                                                                   International Edition, 2002, 41(14): 2596-2599.
            参考文献:                                              [21]  LIU H H, CHAUDHARYA D,  YUSAB S,  et al. Glycerol/starch/
                                                                                                           1
                                                                     +
                                                                   Na -montmorillonite nanocomposites:  A XRD, FTIR,  DSC and  H
            [1]   LI J, LIU H, CHEN J P. Microplastics in freshwater systems: A
                                                                   NMR study[J]. Carbohydrate Polymers, 2011, 83(4): 1591-1597.
                 review on occurrence, environmental effects, and  methods for   [22]  SHI Z J, JIA C X Z, WANG  D W,  et al. Synthesis and
                 microplastics detection[J]. Water Research, 2017, 137(15): 362-374.   characterization of porous tree gum grafted copolymer derived from
            [2]   ZHANG H (张昊), LI Y X (李雅兴), ZHANG Y (张毅),  et al.   Prunus cerasifera  gum polysaccharide[J]. International  Journal of
                 Synthesis of starch-based sulfonic ion exchange resin and its adsorption   Biological Macromolecules, 2019, 133(1): 964-970.
                 properties  of dyes[J]. Fine Chemicals (精细化工), 2020, 37(1):   [23]  JI H Y (计宏益), LI M  Y (李明玉), WENG C C  (翁畅成).
                 135-146.                                          Preparation of ferroferric oxide by precursor method and its catalytic
            [3]   LIU H, XIE E F,  YU L, et al. Thermal processing of starch-based   performance[J]. Fine Chemicals (精细化工), 2020, 37(3): 521-527.
                 polymers[J]. Progress in Polymer Science, 2009, 34(12): 1348-1368.   [24]  JEROEN J G, HUBERTUS  T,  DICK D  W,  et al. Short-range
            [4]   REDDY N, YANG  Y.  Citric acid cross-linking  of starch films[J].   structure in (partially) crystalline potato starch determined with
                 Food Chemistry, 2015, 118(3): 702-711.            attenuated total reflectance fourier-transform IR spectroscopy[J].
            [5]   LIU Q (刘群), ZHANG Y C (张玉苍). Progress of modified starch-   Carbohydrate Research, 1995, 279(1): 201-214.
                 based biodegradable plastics[J]. Chemical Industry and Engineering   [25]  OLUWASINA O O, OLALEYE F K, OLUSEGUN S J, et al. Influence
                 Progress (化工进展), 2020, 39(8): 3124-3134.          of oxidized starch on physicomechanical, thermal properties, and atomic
            [6]   WANG Y D (王宜迪), LI L P (李澜鹏), CAO C H (曹长海), et al.   force micrographs of cassava starch bioplastic film[J]. International
                 Environment-friendly plasticizer design  under green chemistry   Journal of Biological Macromolecules, 2019, 135: 282-293.
                 principals[J].  Engineering Plastics Application  (工程塑料应用),   [26] LI W (李伟), XU Z Z (徐珍珍), WEI A F (魏安方), et al. On the
                 2019, 47(8): 135-139.                             plasticization effect of amide compounds on starch films[J]. Journal
            [7]   SHOGREN R. Effect of orientation on the physical properties of potato   of Anhui Polytechnic University (安徽工程大学学报), 2017, 32(1):
                 amylose and high-amylose corn starch films[J]. Biomacromolecules,   14-18.
                 2007, 8(11): 3641-3645.                       [27]  HE M J (何曼君), ZHANG  H J (张红东), CHEN W  X (陈维孝),
            [8]   MREDHA M T  I, LE H H, TRAN V T,  et al. Anisotropic tough   et al. Polymer physics[M]. Tianjin: Fudan University Press (复旦大
                 multilayer hydrogels with programmable orientation[J]. Materials   学出版社), 2007.
                 Horizons, 2019, 6(7): 1504-1511.              [28]  YAN H B  (严海彪), HU  H (胡慧), JIN K (金科). Progress in
            [9]   MREDHA M T I, GUO Y Z, NONOUAMA T, et al. A facile method   preparation and degradation of starch-based plastics[J]. Plastics (塑
                 to fabricate anisotropic hydrogels with perfectly aligned hierarchical   料), 2020, 49(5): 96-101.
                 fibrous structures[J]. Advanced Materials, 2018, 30(9): 1-8.   [29]  LIU B (刘斌), XU Y J (徐亚杰), WANG S Y (王思予), et al. Study
            [10]  YE D D, LEI X J, LI T, et al. Ultrahigh tough, super clear, and highly   on film formation mechanism and membrane properties of modified
                 anisotropic nanofiber-structured regenerated cellulose films[J]. ACS   starch[J]. Cereals & Oils (粮食与油脂), 2018, 31(6): 57-61.
   162   163   164   165   166   167   168   169   170   171   172