Page 167 - 《精细化工》2021年第7期
P. 167
第 7 期 杨孟楠,等: 淀粉分子磁化修饰及其再生膜材料的制备 ·1449·
4
10 A/m 外加磁场作用后 MMS 受力取向补偿了成膜 Nano, 2019, 13(4): 4843-4853.
过程中体系的团聚情况,使力学性能得到改善,因 [11] SMITH P, LEMSTRA P J P. Ultra-high-strength polyethylene filaments
by solution spinning/drawing[J]. Journal of Materials Science, 1980,
此样品 5 比样品 4 的断裂伸长率提升 33.5%。然而, 15(2): 505-514.
薄膜强度并未在数量级上提高,这很可能是由于外 [12] LIU Y, QIN A, TANG B Z. Polymerizations based on triple-bond
building blocks[J]. Progress in Polymer Science, 2018, 78(3): 92-138.
加磁场强度较弱导致。因此,未来可进一步增强磁 [13] QIN A, TANG L, LAM J W Y, et al. Metal-free click polymerization:
场强度进行实验加以验证。 Synthesis and photonic properties of poly(aroyltriazole)s[J]. Advanced
Functional Materials, 2009, 19(12): 1891-1900.
3 结论 [14] ZHAN F K, WANG R, YIN J J, et al. Facile solvothermal preparation
of Fe 3O 4-Ag nanocomposite with excellent catalytic performance[J].
RSC Advances, 2019, 9(2): 878-883.
(1)以 HS 为原料,通过 CuAAC 点击化学法 [15] LUO Y, ZHOU Z K, YUE T L. Synthesis and characterization of
将淀粉分子还原性端与磁体纳米粒子以共价键连 nontoxic chitosan-coated Fe 3O 4 particles for patulin adsorption in a
接。对合成中各产物进行表征,测试结果证明,成 juice-pH simulation aqueous[J]. Food Chemistry, 2017, 221(4):
317-323.
功合成具有良好磁性的 MMS。 [16] ZHU R F, LIU M M, HOU Y Y, et al. One-pot preparation of
(2)磁场诱导作用下 MMS 在体系中有序化程 fluorine-free magnetic superhydrophobic particles for controllable
liquid marbles and robust multifunctional coatings[J]. ACS Applied
度提高,出现短程有序,降低了体系的混乱程度,促 Materials &Interfaces, 2020, 12(14): 17004-17017.
进氢键的形成,影响了再生淀粉膜的力学性能。当 [17] LIEBERT T, HANSCH C, HEINZE T. Click chemistry with
4
MMS 含量为 15%时,4×10 A/m 磁场作用下得到的 polysaccharides[J]. Macromolecular Rapid Communications, 2006,
27(3): 208-213.
再生淀粉膜较纯 CMS 膜断裂强度提升 88.3%,断裂 [18] SCHATZ C, LOUGUET S, LE M J, et al. Polysaccharide-block-
伸长率提升 49.5%。 polypeptide copolymer vesicles: Towards synthetic viral capsids[J].
Angewandte Chemie International Edition, 2009, 48(14): 2572-2575.
(3)本文提供一种从分子层面诱导取向,提高
[19] SINGH M S, CHOWDHURY S, KOLEY S. Advances of azide-
分子链规整程度,改善天然化工材料(例如:纤维 alkyne cycloaddition-click chemistry over the recent decade[J].
素、壳聚糖等)力学性能的方法。同时,通过强磁 Tetrahedron, 2016, 72(35): 5257-5283.
[20] ROSTOVTSEV V V, GREEN L G, FOKIN V V, et al. A stepwise
场调控 MMS 取向结晶程度,进一步改善淀粉膜力 huisgen cycloaddition process: Copper(Ⅰ)-catalyzed regioselective
学性能。 “ligation” of azides and terminal alkynes[J]. Angewandte Chemie
International Edition, 2002, 41(14): 2596-2599.
参考文献: [21] LIU H H, CHAUDHARYA D, YUSAB S, et al. Glycerol/starch/
1
+
Na -montmorillonite nanocomposites: A XRD, FTIR, DSC and H
[1] LI J, LIU H, CHEN J P. Microplastics in freshwater systems: A
NMR study[J]. Carbohydrate Polymers, 2011, 83(4): 1591-1597.
review on occurrence, environmental effects, and methods for [22] SHI Z J, JIA C X Z, WANG D W, et al. Synthesis and
microplastics detection[J]. Water Research, 2017, 137(15): 362-374. characterization of porous tree gum grafted copolymer derived from
[2] ZHANG H (张昊), LI Y X (李雅兴), ZHANG Y (张毅), et al. Prunus cerasifera gum polysaccharide[J]. International Journal of
Synthesis of starch-based sulfonic ion exchange resin and its adsorption Biological Macromolecules, 2019, 133(1): 964-970.
properties of dyes[J]. Fine Chemicals (精细化工), 2020, 37(1): [23] JI H Y (计宏益), LI M Y (李明玉), WENG C C (翁畅成).
135-146. Preparation of ferroferric oxide by precursor method and its catalytic
[3] LIU H, XIE E F, YU L, et al. Thermal processing of starch-based performance[J]. Fine Chemicals (精细化工), 2020, 37(3): 521-527.
polymers[J]. Progress in Polymer Science, 2009, 34(12): 1348-1368. [24] JEROEN J G, HUBERTUS T, DICK D W, et al. Short-range
[4] REDDY N, YANG Y. Citric acid cross-linking of starch films[J]. structure in (partially) crystalline potato starch determined with
Food Chemistry, 2015, 118(3): 702-711. attenuated total reflectance fourier-transform IR spectroscopy[J].
[5] LIU Q (刘群), ZHANG Y C (张玉苍). Progress of modified starch- Carbohydrate Research, 1995, 279(1): 201-214.
based biodegradable plastics[J]. Chemical Industry and Engineering [25] OLUWASINA O O, OLALEYE F K, OLUSEGUN S J, et al. Influence
Progress (化工进展), 2020, 39(8): 3124-3134. of oxidized starch on physicomechanical, thermal properties, and atomic
[6] WANG Y D (王宜迪), LI L P (李澜鹏), CAO C H (曹长海), et al. force micrographs of cassava starch bioplastic film[J]. International
Environment-friendly plasticizer design under green chemistry Journal of Biological Macromolecules, 2019, 135: 282-293.
principals[J]. Engineering Plastics Application (工程塑料应用), [26] LI W (李伟), XU Z Z (徐珍珍), WEI A F (魏安方), et al. On the
2019, 47(8): 135-139. plasticization effect of amide compounds on starch films[J]. Journal
[7] SHOGREN R. Effect of orientation on the physical properties of potato of Anhui Polytechnic University (安徽工程大学学报), 2017, 32(1):
amylose and high-amylose corn starch films[J]. Biomacromolecules, 14-18.
2007, 8(11): 3641-3645. [27] HE M J (何曼君), ZHANG H J (张红东), CHEN W X (陈维孝),
[8] MREDHA M T I, LE H H, TRAN V T, et al. Anisotropic tough et al. Polymer physics[M]. Tianjin: Fudan University Press (复旦大
multilayer hydrogels with programmable orientation[J]. Materials 学出版社), 2007.
Horizons, 2019, 6(7): 1504-1511. [28] YAN H B (严海彪), HU H (胡慧), JIN K (金科). Progress in
[9] MREDHA M T I, GUO Y Z, NONOUAMA T, et al. A facile method preparation and degradation of starch-based plastics[J]. Plastics (塑
to fabricate anisotropic hydrogels with perfectly aligned hierarchical 料), 2020, 49(5): 96-101.
fibrous structures[J]. Advanced Materials, 2018, 30(9): 1-8. [29] LIU B (刘斌), XU Y J (徐亚杰), WANG S Y (王思予), et al. Study
[10] YE D D, LEI X J, LI T, et al. Ultrahigh tough, super clear, and highly on film formation mechanism and membrane properties of modified
anisotropic nanofiber-structured regenerated cellulose films[J]. ACS starch[J]. Cereals & Oils (粮食与油脂), 2018, 31(6): 57-61.