Page 198 - 《精细化工》2021年第8期
P. 198

·1692·                            精细化工   FINE CHEMICALS                                 第 38 卷

                 24-32.                                            length and generation number on properties of flexible hyperbranched
            [9]   XU C L, ZHANG L P, XU D, et al. Preparation of reactive nanoscale   polyurethane acrylate and its UV-cured film[J]. Progress in Organic
                 carbon black dispersion for pad coloration of cotton fabric[J].   Coatings, 2018, 114: 216-222.
                 Coloration Technology, 2018, 134(2): 92-99.     [13]  ZHAO C Y, WANG C X, WANG Y J. Super stretchable chromatic
            [10]  LIANG B J (梁柏俊), CHEN G F (陈谷峰), LIU N S (刘能盛), et al.   polyurethane driven by anthraquinone chromogen as chain
                 Application of gel permeation chromatography in characterization of   extender[J]. RSC Advances, 2019, 9(5): 2332-2342.
                 polymer materials[J].  Polymer Bulletin  (高分子通报), 2019, (4):   [14]  JI X H (季兴宏).  Technologies of synthesis of new  polymeric
                 21-26.                                            dispersants and their applications for waterborne coating[J]. China
            [11]  XU Y, JI X  Q, GE F Q, et al.  Synthesis of transparent covalently   Coating (中国涂料), 2018, 33(8): 17-22.
                 self-colored polyurethane based on  anthraquinone chromophore   [15]  CAO R C  (曹瑞春),  WEI X F (魏先福),  WANG Q (王琪),  et al
                 chain extenders[J]. Progress in Organic Coatings, 2018, 123: 1-9.     Research progress  on  dispersion  technique of water-based ink[J].
            [12]  XIANG H P, WANG X W, DONG H H, et al. Effect of soft chain   Fine Chemicals (精细化工), 2017, 34(3): 241-249.

            (上接第 1627 页)                                           Mn addition on Cu-SSZ-39 zeolites for NH 3-SCR reaction: Activity,
            [13]  XIE L J, LIU F D, REN L M, et al. Excellent performance of one-pot   hydrothermal stability, and mechanism study[J]. Chemical Engineering
                 synthesized Cu-SSZ-13 catalyst for the selective catalytic reduction   Journal, 2020, 393: 124782.
                 of NO x with NH 3[J]. Environmental Science &  Technology, 2014,   [26]  SUN C Z, LIU H, CHEN W, et al. Insights into the Sm/Zr co-doping
                 48(1): 566-572.                                   effects on N 2 selectivity and SO 2 resistance of a MnO x-TiO 2 catalyst
            [14]  MA Y, WU X D, CHENG S Q, et al. Relationships between copper   for the NH 3-SCR reaction[J]. Chemical Engineering Journal, 2018,
                 speciation and Brønsted acidity evolution over Cu-SSZ-13 during   347: 27-40.
                 hydrothermal aging[J]. Applied Catalysis A: General, 2020, 602: 117650.     [27]  SHAN Y L, SHI X Y, YAN Z D, et al. Deactivation of Cu-SSZ-13 in
            [15]  MA  L, CHENG Y  S, CAVATAIO G,  et al.  Characterization of   the presence of SO 2 during hydrothermal aging[J]. Catalysis Today,
                 commercial Cu-SSZ-13 and Cu-SAPO-34 catalysts with hydrothermal   2019, 320: 84-90.
                 treatment for NH 3-SCR of NO x  in  diesel exhaust[J]. Chemical   [28]  PAPPAS D K,  BONINGARI T, BOOLCHAND P,  et al. Novel
                 Engineering Journal, 2013, 225(3): 323-330.       manganese oxide  confined interweaved titania nanotubes for the
            [16]  WANG D, JANGJOU Y, LIU Y, et al. A comparison of hydrothermal   low-temperature selective catalytic reduction (SCR) of NO x by
                 aging effects on NH 3-SCR of NO x over Cu-SSZ-13 and Cu-SAPO-34   NH 3[J]. Journal of Catalysis, 2016, 334(3): 1-13.
                 catalysts[J]. Applied Catalysis B Environmental, 2015, 165: 438-445.     [29]  YASHNIK S A, ISMAGILOV Z R, ANUFRIENKO V F. Catalytic
            [17]   MOLINGER M, FRANCH C, PALOMARES E, et al. Cu-SSZ-39,   properties and electronic structure of copper ions in Cu-ZSM-5[J].
                 an active and hydrothermally stable catalyst for the selective catalytic   Catalysis Today, 2005, 110(3/4): 310-322.
                 reduction of NO x[J]. Chemical Communications, 2012, 48(66): 8264-8266.     [30]  PAOLUCCI  C, PAREKH A A,  KHURANA I, et al. Catalysis in a
            [18]  NURIA M  G, PETER  N  R, JOAKIM R  T,  et al. Iron-containing   cage: Condition-dependent speciation and dynamics of exchanged Cu
                 SSZ-39 (AEI) zeolite: An active and stable high-temperature NH 3-SCR   cations in SSZ-13 zeolites[J]. American Chemical Society, 138(18):
                 catalyst[J]. ChemCatChem, 2017, 9(10): 1754-1757.     6028-6048.
            [19]  SHAN Y L, SHAN W P, SHI X Y, et al. A comparative study of the   [31]  WANG D, GAO F, PEDEN C H, et al. Selective catalytic reduction
                 activity and  hydrothermal stability of  Al-rich Cu-SSZ-39 and   of NO x with NH 3 over a Cu-SSZ-13 catalyst prepared by a solid-state
                 Cu-SSZ-13[J]. Applied Catalysis B: Environmental, 2019, 264: 118511.     ion-exchange method[J]. ChemCatChem, 2014, 6(6): 1579-1583.
            [20]  ZHAO Z C, YU R, SHI C, et al. Rare-earth ion exchanged Cu-SSZ-13   [32]  LUO J Y, GAO F, KAMASAMUDRAM K, et al. New insights into
                 zeolite from organotemplate-free synthesis with enhanced hydrothermal   Cu/SSZ-13 SCR catalyst acidity. Part I: Nature of acidic sites probed
                 stability in NH 3-SCR of NO x[J]. Catalysis Science & Technology,   by NH 3 titration[J]. Journal of Catalysis, 2017, 348: 291-299.
                 2019, 9(1): 241-251.                          [33]  CHOI E Y, NAM I S, KIM Y G.  TPD study of mordenite-type
            [21]  WANG J C, PENG Z L, QIAO  H,  et al. Cerium stabilized   zeolites for selective catalytic reduction of NO by NH 3[J]. Journal of
                 Cu-SSZ-13 catalyst for the catalytic removal of NO x by NH 3[J].   Catalysis, 1996, 161(2): 597-604.
                 Industrial & Engineering Chemistry Research, 2016, 55(5): 1-17.     [34]  HUANG  L M, WANG X M, YAO S Y,  et al. Cu-Mn bimetal
            [22]  SONG C M, ZHANG L H, LI Z  G,  et al. Co-exchange of Mn: A   ion-exchanged  SAPO-34 as an active SCR catalyst for removal of
                 simple method to improve both the hydrothermal stability and activity   NO x from diesel engine exhausts [J]. Catalysis Communications,
                 of Cu-SSZ-13NH 3-SCR catalysts[J]. Catalysts, 2019, 9(5): 455.     2016, 81(3): 54-57.
            [23]  DUSSELIER M, SCHMIDT J E, MOULTON R, et al. Influence of   [35]  CHEN  B H, XU  R N,  ZHANG R  D,  et al. Economical way to
                 organic structure directing agent isomer distribution on the synthesis   synthesize SSZ-13 with abundant  ion-exchanged Cu +   for an
                 of SSZ-39[J]. Chemistry of Materials, 2015, 27(7): 2695-2702.     extraordinary performance in selective catalytic reduction (SCR) of
            [24]  ZHU N, SHAN Y L, SHAN  W P,  et al. Distinct NO 2  effects on   NO x by ammonia[J]. Environmental Science &  Technology, 2014,
                 Cu-SSZ-13 and Cu-SSZ-39 in the selective catalytic reduction of   48(23): 13909-13916.
                 NO x with NH 3[J]. Environmental Science & Technology, 2020, 54:   [36]  PANG C K, ZHUO Y Q, WENG Q Y, et al. The promotion effect of
                 15499-15506.                                      manganese on Cu/SAPO for selective catalytic reduction of NO x with
            [25]  WANG Y, LI G G, ZHANG S Q, et al. Promoting effect of Ce and   NH 3[J]. RCS Advances, 8(11): 6110-6119.
   193   194   195   196   197   198   199   200   201   202   203