Page 203 - 《精细化工》2022年第1期
P. 203

第 1 期                 刘远峰,等:  微生物燃料电池处理丙酮和氨氮废水及同步产电性能                                    ·193·


                   2NO   3   12H   +  10e     N   2  6H O    (5)    [8]   sludge[J]. Journal of Hazard Materials, 2006, 132: 253-260.
                                             2
                                                                   JIN Y Q (金艳青), QI G Y (祁高月), LI Y (李勇), et al. Methane
                CH COO     4H O   2HCO     9H   +  8e   (6)  cycle anaerobic membrane bioreactor for treating mixed wastewater
                   3         2          3                          of acetone and isopropyl alcohol at normal temperature[J]. Chinese
                       O   4H   +  4e     2H O    (7)          Journal of Environmental Engineering (环境工程学报), 2016,  10:
                         2               2                         5617-5623.
                                                               [9]   LIU  Y F (刘远峰), ZHANG X L (张秀玲),  LI C J  (李从举).
                                                                   Advances in carbon-based anode materials for microbial fuel cells[J].
                                                                   Chinese Journal Engineering (工程科学学报), 2019, 42: 270-277.
                                                               [10]  LIU Y F,  ZHANG X L, ZHANG  Q  C,  et al. Microbial fuel cell:
                                                                   Nanomaterials based on anode and their application[J]. Energy
                                                                   Technology, 2020, 8: 2000206-2000215.
                                                               [11] ZU B (祖波), MA L (马兰), LIU B (刘波), et al. Effects of organic
                                                                   substrates  on  anammox-MFC  denitrification  electrogenesis
                                                                   performance[J]. Environmental Science ( 环境 科学 ), 2018, 39:
                                                                   3937-3945.
                                                               [12]  YE Y Y, NGO H H, GUO W S, et al. Feasibility study on a double
                                                                   chamber  microbial fuel cell for nutrient recovery from  municipal
                                                                   wastewater[J]. Chemical Engineering Journal, 2019, 358: 236-242.
                                                               [13]  SONAWANE J M, ADELOJU S B, GHOSH P C. Landfill leachate:
                                                                   A promising substrate for microbial fuel cells[J]. International
                                                                   Journal of Hydrogen Energy, 2017, 42: 23794-23798.
                                                               [14]  SAWASDEE V, PISUTPAISAL N. Simultaneous pollution treatment
                 图 6  MFC 同步去除丙酮和氨氮的构想路径                           and electricity generation of tannery wastewater in air-cathode single
                                                                   chamber MFC[J]. International Journal of Hydrogen Energy, 2016,
            Fig. 6    Proposed pathways for simultaneous removal of   41(35): 15632-15637.
                   acetone and nitrogen in MFC                 [15]  FENG C H, HUANG L Q,  YU H,  et al. Simultaneous phenol
                                                                   removal, nitrification and denitrification using microbial fuel cell
                                                                   technology[J]. Water Research, 2015, 76: 160-170.
            4    结论                                            [16]  ZHANG C J (张彩娟), XIE B H (谢碧海). Determination of acetone
                                                                   in polluted water by ultraviolet spectrophotometry[J]. Zhejiang
                                                                   Journal of Preventive Medicine (浙江预防医学), 2001, 13: 51-52.
                 本研究成功实现了在双室 MFC 中降解丙酮和                        [17]  LI Z L, CHENG R, CHEN F, et al. Selective stress of antibiotics on
            氨 氮同时 回收 电能的 目的 ,当丙 酮质 量浓 度                            microbial denitrification:  Inhibitory effects, dynamics of microbial
                                                                   community structure and function[J]. Journal of Hazard Materials,
            <300 mg/L 时,阴极中的硝化细菌未受到明显的抑                            2021, 405: 124366-124378.
                                                    2
            制,产生的最大输出功率密度为 49.7 mW/m ,最高                       [18]  SLATE A J,  WHITEHEAD K A, BROWNSON D A  C,  et al.
                                                                   Microbial fuel cells: An overview of current  technology[J].
            COD 和氨氮去除效率分别为 71.4%和 73.7%。此外,                        Renewable and Sustainable Energy Reviews, 2019, 101: 60-81.
                                                               [19]  HWANG J H, KIM K Y, RESURRECCION E P,  et al. Surfactant
            丙酮的去除率均在 96%以上,说明具有高效的丙酮                               addition to enhance bioavailability of bilge water in single chamber
                                                                   microbial fuel cells (MFCs)[J]. Journal of Hazard Materials, 2019,
            及氨氮去除性能。对阳极及阴极中的微生物结构进                                 368: 732-738.
                                                               [20]  RUGGERO R, YANG W L, EMILY Z, et al. In-situ biofilm removal
            行分 析发现,阳极中的优势菌为 Comamonas、                             from air cathodes in  microbial fuel cells treating domestic
            Acetoanaerobium、Stenotrophomonas;阴极中的主要                wastewater[J]. Bioresource Technology, 2018, 265: 200-206.
                                                               [21]  HE C S, MU Z X, YANG H Y, et al. Electron acceptors for energy
            优势菌为 Rhodococcus、Aridibacter、 Thauera、                 generation in microbial fuel cells fed with wastewaters: A
                                                                   mini-review[J]. Chemosphere, 2015, 140: 12-17.
            Ignavibacterium。本研究为 MFC 在丙酮及氨氮废水                  [22]  LIU Y F,  ZHANG X L, LI H Y,  et al. Porous  α-Fe 2O 3 nanofiber
                                                                   combined with carbon  nanotube  as anode to enhance the
            的实际应用方面提供了新的思路。                                        bioelectricity generation  for microbial fuel cell[J]. Electrochimica
                                                                   Acta, 2021, 391: 138984-138992.
            参考文献:                                              [23]  QUAN X C (全向春), QUAN Y P (全燕苹), XIAO Z T (肖竹天).
                                                                   Enhanced removal of herbicide 2, 4-dichlorophenoxyacetic acid and
            [1]   WU H, FU Y, GUO C Y, et al. Electricity generation and removal   simultaneous power generation in microbial fuel cells[J].
                 performance of a microbial fuel cell using sulfonated poly(ether ether   Environmental Science (环境科学), 2017, 38: 1067-1073.
                 ketone) as  proton exchange membrane to treat phenol/acetone   [24]  LIU Y F (刘远峰), ZHANG X L (张秀玲), ZHANG Q C (张其春),
                 wastewater[J]. Bioresource Technology, 2018, 260: 130-134.     et al. Research progress of anode electrogenic microorganisms in
            [2]   LIU H B (刘寒冰), JIANG X (姜鑫),  WANG X (王新),  et al.   microbial fuel cells[J]. Fine Chemicals (精细化工), 2020,  37:
                 Toluene, benzene and acetone adsorption by activated carbon coated   1729-1737.
                 with PDMS[J]. Environmental Science (环境科学), 2016, 37(4):   [25]  LIU R (刘茹), ZHAO  Y  G (赵阳国), LU S S (卢珊珊),  et al.
                 1287-1294.                                        Electricity generation from lactate using microbial fuel cell and the
            [3]   XIONG L, HUANG C, CHEN X F,  et al. Comparison of   distribution characteristics of anode microbial community[J]. Acta
                 fermentation by mono-culture and co-culture of oleaginous yeasts for   Microbiologica Sinica (微生物学报), 2012, 52: 744-752.
                 ABE (acetone-butanol-ethanol) fermentation wastewater  treatment[J].   [26] ZHAO  X  (赵欣),  WU Y N (吴忆宁), WANG  L (王岭),  et al.
                 Journal of Environmental Chemical Engineering, 2016, 4(4): 3803-3809.     Removal of Ni(Ⅱ) and microbial dynamics in single-chamber
            [4]   CHEN Y F (陈月芳), FAN R (樊荣), TENG  K J (滕科均),  et al.   microbial electrolysis cell[J]. Acta Microbiologica Sinica, 2016, 56:
                 Experimental study on pretreatment of phenol acetone wastewater by   1794-1801.
                 electro-catalytic oxidation[J]. China Environmental Science (中国环  [27]  JIANG Q Q (蒋青青), ZHANG L (张璐), SUN  R (孙睿),  et al.
                 境科学), 2017, 1: 131-138.                           Impact of different sludge inoculum on  microbial community
            [5]   CHOI J, JEONG  J H, CHUNG J.  Degradation  of acetone and   formation of the microbial fuel cells[J]. Journal of Harbin Institute
                 isopropylalcohol  in electronic wastewater using Fe- and Al-   Technology (哈尔滨工业大学学报), 2018, 50(2): 34-39.
                 immobilized catalysts[J]. Chemical Engineering Journal, 2013, 218:   [28]  LIN X Q, LI Z L, LIANG B, et al. Identification of biofilm formation
                 260-266.                                          and exoelectrogenic population structure and  function with
            [6]   KODAMATANI H, YOSHIMINE D,  FUJIOKA T,  et al. A novel   graphene/polyaniline  modified anode in microbial fuel cell[J].
                 luminol chemiluminescence induced by photoexcited ketones: A   Chemosphere, 2019, 219: 358-364.
                 selective determination method for acetone in wastewater[J]. Talanta   [29]  HE S, DING L L, LI K, et al. Comparative study of activated sludge
                 Open, 2021, 3: 100035-100040.                     with different individual nitrogen sources at a low temperature:
            [7]   QUESNEL D, NAKHLA G. Removal kinetics of acetone and MIBK   Effluent  dissolved organic  nitrogen compositions, metagenomic and
                 from a complex industrial wastewater by an acclimatized activated   microbial community[J]. Bioresource Technology, 2018, 247: 915-923.
   198   199   200   201   202   203   204   205   206   207   208