Page 54 - 《精细化工》2022年第1期
P. 54

·44·                              精细化工   FINE CHEMICALS                                 第 39 卷

                 Research (当代化工研究), 2018, 11: 4-6.             [26]  LI J (李坚), GAN  W T (甘文涛). Preparation and multifunctional
            [6]   GASKIN J  W, STEINER C, HARRIS K,  et al. Effect of low-   modification of magnetotactic wood[J]. Journal of Forest and
                 temperature pyrolysis conditions on biochar for agricultural use[J].   Environment (森林与环境学报), 2017, 37(3): 257-265.
                 Transactions of the ASABE, 2008, 51(6): 2061-2069.     [27]  AHMED M J,  THEYDAN S K.  Optimization of microwave
            [7]   ZHU C J (朱晨杰), ZHANG H Y (张会岩), XIAO R (肖睿), et al.   preparation conditions  for activated carbon from Albizia lebbeck
                 Research progress in catalytic valorization  of  lignocellulose[J].   seed pods for methylene blue dye adsorption[J]. Journal of Analytical
                 Science China Chemistry (中国科学:  化学), 2015, 45(5): 454-478.     and Applied Pyrolysis, 2014, 105: 199-208.
            [8]   ZHU H L, LUO W, CIESIELSKI P N, et al. Wood-derived materials   [28] TONG L (童磊). Synthesis and applications of hierarchically porous
                 for green electronics, biological devices, and energy applications[J].   carbons[D]. Hefei:  University of Science and Technology of China
                 Chemical Reviews, 2016, 116(16): 9305-9374.       (中国科学技术大学), 2020.
            [9]   KAUR P, VERMA G, SEKHON S S. Biomass derived hierarchical   [29]  SEVILLA M, MOKAYA R. Energy storage applications of activated
                 porous carbon materials as oxygen reduction reaction electrocatalysts   carbons: Supercapacitors and hydrogen storage[J]. Energy &
                 in fuel cells[J]. Progress in Materials Science, 2019, 102: 1-71.     Environmental Science, 2014, 7(4): 1250-1280.
            [10]  LI C Z, ZHAO X C, WANG A Q, et al. Catalytic transformation of   [30]  AHMADPOUR A, DO D D. The preparation of active carbons from
                 lignin  for the production  of chemicals and fuels[J].  Chemical   coal by chemical and physical activation[J]. Carbon, 1996, 34(4):
                 Reviews, 2015, 115(21): 11559-11624.              471-479.
            [11]  CHANDEL A K, SINGH O V, RAO L  V.  Biotechnological   [31]  CATURLA F, MOLINA-SABIO M,  RODRÍGUEZ-REINOSO F.
                 applications of hemicellulosic  derived  sugars: State-of-the-art[J].   Preparation of activated carbon by chemical activation with ZnCl 2[J].
                 Sustainable Biotechnology, 2010: 63-81.           Pergamon, 1991, 29(7): 999-1007.
            [12]  SUN Z J (孙振钧). Biomass industry and its developmental trends in   [32]  OTOWA  T,  TANIBATA R, ITOH  M. Production and adsorption
                 China[J]. Transactions  of  the Chinese Society of Agricultural   characteristics of MAXSORB: High-surface-area  active carbon[J].
                 Engineering (农业工程学报), 2004, 20(5): 1-5.           Gas Separation & Purification, 1993, 7(4): 241-245.
            [13]  YANG F, ZHANG S S, SUN Y Q,  et al. Fabrication and   [33]  MOLINA-SABIO  M, RODRíGUEZ-REINOSO F, CATURLA F,
                 characterization of hydrophilic corn stalk biochar-supported   et al. Porosity in granular carbons activated with phosphoric acid[J].
                 nanoscale zero-valent iron composites for efficient metal removal[J].   Carbon, 1995, 33(8): 1105-1113.
                 Bioresource Technology, 2018, 265: 490-497.     [34]  LILLO-RODENAS M A,  CAZORLA-AMOROS D,  LINARES-
            [14]  ZHANG M, GAO  B, VARNOOSFADERANI S,  et al. Preparation   SOLANO A. Understanding chemical reactions between carbons and
                 and characterization of a novel magnetic biochar for arsenic   NaOH and KOH-An insight into the chemical activation
                 removal[J]. Bioresource Technology, 2013, 130: 457-462.     mechanism[J]. Carbon, 2003, 41(2): 267-275.
            [15]  CHEN B  L,  CHEN Z M, LV S F. A novel magnetic biochar   [35]  LILLO-RODENAS M A, JUAN-JUAN J, CAZORLA-AMOROS D,
                 efficiently sorbs organic pollutants and phosphate[J]. Bioresource   et al. About reactions  occurring during chemical activation with
                 Technology, 2011, 102(2): 716-723.                hydroxides[J]. Carbon, 2004, 42(7): 1371-1375.
            [16]  REDDY D H  K,  LEE S M. Magnetic biochar composite: Facile   [36]  MOLINA-SABIO M, RODRIGUEZ-REINOSO F. Role of chemical
                 synthesis, characterization, and application for  heavy metal   activation  in the development of carbon  porosity[J]. Colloids and
                 removal[J].  Colloids and Surfaces A-Physicochemical and   Surfaces A: Physicochemical and Engineering Aspects, 2004,
                 Engineering Aspects, 2014, 454: 96-103.           241(1/2/3): 15-25.
            [17]  XIANG Y J, WU X C, LIU D F, et al. Formation of rectangularly   [37]  JAGTOYEN M, DERBYSHIRE F.  Activated carbons from yellow
                 shaped Pd/Au bimetallic nanorods: Evidence for competing growth   poplar and white oak by H 3PO 4 activation[J]. Carbon, 1998, 36(7):
                 of the Pd shell between the 110 and  100 side facets of Au   1085-1097.
                 nanorods[J]. Nano Letters, 2006, 6(10): 2290-2294.     [38]  SHUKLA S K, QURAISHI M A. Cefalexin drug: A new and efficient
            [18]  FERRANDO R, JELLINEK J, JOHNSTON R L. Nanoalloys: From   corrosion inhibitor  for mild steel in hydrochloric acid solution[J].
                 theory to applications of alloy clusters and nanoparticles[J].   Materials Chemistry and Physics, 2010, 120(1): 142-147.
                 Chemical Reviews, 2008, 108(3): 845-910.      [39]  ZHU R X, SHEN J, WEI Y Y, et al. Urea-functionalized mesoporous
            [19]  WANG D, LI Y. Bimetallic nanocrystals: Liquid-phase synthesis and   polymeric  catalyst: Acooperative effect between support and
                 catalytic applications[J]. Advanced Materials, 2011, 23(9): 1044-1060.     secondary amine on water-medium knoevenagel reactions[J]. New
            [20]  JIANG H L, XU  Q. Recent progress in synergistic catalysis over   Journal of Chemistry, 2011, 35(9): 1861-1866.
                 heterometallic nanoparticles[J]. Journal of Materials Chemistry,   [40]  YIN J, ZHANG W, ALHEBSHI N A, et al. Synthesis strategies of
                 2011, 21(36): 13705-13725.                        porous carbon for supercapacitor applications[J]. Small Methods,
            [21]  WEI Y, LIU H, LIU S, et al. Waste cotton-derived magnetic porous   2020, 4(3): 1900853.
                 carbon for high-efficiency  microwave absorption[J]. Composites   [41]  THUE P S, LIMA E C, SIELIECHI J M, et al. Effects of first-row
                 Communications, 2018, 9: 70-75.                   transition metals and impregnation  ratios  on  the physicochemical
            [22]  SU Y F, CHENG Y L, SHIH Y H. Removal of trichloroethylene by   properties  of microwave-assisted activated carbons  from wood
                 zerovalent iron/activated carbon derived from agricultural wastes[J].   biomass[J]. Journal of Colloid and Interface Science, 2017, 486:
                 Journal of Environmental Management, 2013, 129: 361-366.     163-175.
            [23]  MOHAN D, KUMAR H, SARSWAT  A,  et al. Cadmium and lead   [42]  MUBARAK N M, KUNDU A, SAHU J N, et al. Synthesis of palm
                 remediation using magnetic oak wood and oak bark fast pyrolysis   oil empty fruit bunch magnetic pyrolytic char impregnating with
                 bio-chars[J]. Chemical Engineering Journal, 2014, 236: 513-528.     FeCl 3 by  microwave heating technique[J]. Biomass &  Bioenergy,
            [24]  BASTAMI T  R, ENTEZARI M H.  Activated carbon from carrot   2014, 61: 265-275.
                 dross combined  with magnetite nanoparticles for the efficient   [43]  ZHOU L, MA J, ZHANG H, et al. Fabrication of magnetic carbon
                 removal of  p-nitrophenol from aqueous solution[J]. Chemical   composites from peanut shells and its application as a heterogeneous
                 Engineering Journal, 2012, 210: 510-519.          Fenton catalyst in removal of methylene blue[J]. Applied Surface
            [25]  GONG C H, WANG X X, LIU H J, et al. Facile in situ synthesis of   Science, 2015, 324: 490-498.
                 nickel/cellulose nanocomposites: Mechanisms, properties and   [44]  KANG C Y (康彩艳), LI Q Y (李秋燕), LIU J Y (刘金玉), et al.
                 perspectives[J]. Cellulose, 2014, 21(6): 4359-4368.     Effect of  biochar at different  pyrolysis  temperatures on the
   49   50   51   52   53   54   55   56   57   58   59