Page 64 - 《精细化工》2022年第1期
P. 64

·54·                              精细化工   FINE CHEMICALS                                 第 39 卷

            3   结论与展望                                              paradigm of sewage sludge biochar: Valorization, opportunities,
                                                                   challenges and future prospects[J]. Journal  of Cleaner Production,
                                                                   2020, 269: 122259.
                 污泥生物炭基催化剂具有丰富的含氧基团、缺                          [12]  FAN H X (范皓翔),  YUAN S J (院士杰), DAI X  H (戴晓虎).
            陷以及过渡金属等活性位点,因而在高级氧化体系                                 Research progress on sludge-derived biochar[J].  Water Purification
                                                                   Technology (净水技术), 2019, 38(3): 32-37, 44.
            表现出优良的催化潜力。此外,较大的比表面积和
                                                               [13]  LEE J, KIM K H, KWON E E. Biochar as a catalyst[J]. Renewable
            优良的孔隙结构使得污泥生物炭可作为合适的载体                                 and Sustainable Energy Reviews, 2017, 77: 70-79.
            用于修饰改性,从而进一步增强其催化活性。本文                             [14]  HOSSAIN M K,  STREZOV V, CHAN K  Y,  et al. Influence of
                                                                   pyrolysis temperature on production and nutrient properties of wastewater
            系统描述了污泥生物炭的制备方法并分别阐述了污                                 sludge biochar[J]. Journal of Environmental Management, 2011, 92:
            泥生物炭基催化剂在不同氧化体系中的应用情况。                                 223-228.
                                                               [15]  WEI S Y (韦思业). Influence of biomass feedstocks and pyrolysis
            然而,污泥生物炭基材料的催化活性、稳定性以及
                                                                   temperatures on physical and chemical properties of biochar[D].
            可重用性仍需进一步的研究,以拓展其在实际水处                                 Beijing: University of Chinese Academy of Sciences (中国科学院大
            理中的应用。此外,污泥生物炭基催化剂合成过程                                 学), 2017.
                                                               [16]  MOHANTY P, NANDA S, PANT K K,  et al. Evaluation  of the
            的能耗问题、过渡金属元素的浸出污染问题仍亟待                                 physiochemical development of biochars obtained from pyrolysis of
            解决。未来污泥生物炭基催化剂的发展应首先聚焦                                 wheat straw, timothy grass and pinewood: Effects of heating rate[J].
                                                                   Journal of Analytical and Applied Pyrolysis, 2013, 104: 485-493.
            于增强污泥生物炭基催化剂的稳定性,防止造成二
                                                               [17]  SUN C, CHEN T, HUANG Q X, et al. Activation of persulfate by
            次污染;其次,进一步改善制备过程,降低能耗;                                 CO 2-activated biochar for improved phenolic pollutant degradation:
            同时,测试其在动态连续流反应器中的催化活性及                                 Performance  and mechanism[J]. Chemical  Engineering Journal,
                                                                   2020, 380: 122519.
            循环再生性,以提高工业化应用潜力;最后,通过                             [18]  LIANG H W, ZHUANG X D, BRÜLLER S,  et al. Hierarchically
            优化改性方法,同时耦合各种氧化体系,可显著增                                 porous carbons with optimized nitrogen doping as  highly active
                                                                   electrocatalysts for oxygen  reduction[J]. Nature Communications,
            强污泥生物炭基催化剂的水处理效能。                                      2014, 5: 4973.
                                                               [19]  ZHANG H, XUE  G, CHEN H,  et al. Magnetic biochar catalyst
            参考文献:                                                  derived from biological sludge and ferric sludge using hydrothermal
            [1]   LI F (李峰), GONG W B (龚文斌). Experimental study on coupling   carbonization: Preparation, characterization and its circulation  in
                 power generation  technology of tower boiler mixed with 60%   Fenton process  for dyeing wastewater treatment[J]. Chemosphere,
                 moisture sludge[J]. Boiler Technology (锅炉技术), 2019, 50(5):   2018, 191: 64-71.
                 31-36.                                        [20]  LIBRA J A, RO K S, KAMMANN C,  et al. Hydrothermal
            [2]   DAI X H (戴晓虎). Applications and perspectives of sludge treatment   carbonization of biomass residuals: A comparative review of the
                 and disposal in China[J]. Science (科学), 2020, 72(6): 30-34, 4.     chemistry, processes and applications  of wet and dry pyrolysis[J].
            [3]   LIU H X (刘宏喜). Comprehensive utilization technology as a   Biofuels, 2011, 2(1): 71-106.
                 resource by incineration treatment on sludge from printing and dyeing   [21]  PETERSON A A,  VOGEL  F, LACHANCE  R P,  et al.
                 wastewater[J]. Chemical Fiber & Textile Technology (化纤与纺织技  Thermochemical biofuel production in hydrothermal media: A review
                 术), 2012, 41(1): 17-21.                           of sub- and supercritical water technologies[J]. Energy & Environmental
            [4]   WANG J (汪佳). Study on treatment of refractory organic wastewater   Science, 2008, 1: 32-65.
                 by persulfate activated by iron based sludge-derived biochar[D].   [22]  JIAN X M,  ZHUANG X Z, LI B S,  et al. Comparison of
                 Wuhan: Huazhong University of Science and Technology (华中科技  characterization and adsorption of biochars produced from hydrothermal
                 大学), 2017.                                        carbonization and pyrolysis[J]. Environmental Technology & Innovation,
            [5]   HUO Z Y, LEE D M, KIM Y J, et al. Solar-induced hybrid energy   2018, 10: 27-35.
                 harvesters for advanced oxidation water treatment[J]. iScience, 2021,   [23]  YUAN H  R, LU T,  HUANG  H Y,  et al. Influence of pyrolysis
                 24(7): 102808.                                    temperature on physical and chemical  properties of biochars  made
            [6]   ZHU D  D, ZHOU Q X.  Action and  mechanism of semiconductor   from sewage sludge[J]. Journal of Analytical and Applied Pyrolysis,
                 photocatalysis on degradation of  organic pollutants in water   2015, 112: 284-289.
                 treatment: A review[J]. Environmental Nanotechnology, Monitoring   [24]  LIU T T,  LIU Z G,  ZHENG  Q  F,  et al. Effect of hydrothermal
                 & Management, 2019, 12: 100255.                   carbonization on migration and environmental risk of heavy metals in
            [7]   ZHANG  M H, DONG H,  ZHAO  L,  et al. A review on  Fenton   sewage sludge during pyrolysis[J]. Bioresource Technology, 2018,
                 process for organic wastewater treatment based on optimization   247: 282-290.
                 perspective[J]. Science of the Total Environment, 2019, 670: 110-121.     [25]  ZAKER A,  CHEN Z, WANG X  L,  et al. Microwave-assisted
            [8]   LEE J S, GUNTEN U V, KIM J H. Persulfate-based  advanced   pyrolysis of sewage sludge: A review[J]. Fuel Processing Technology,
                 oxidation: Critical assessment of opportunities and  roadblocks[J].   2019, 187: 84-104.
                 Environmental Science & Technology, 2020, 54: 3064-3081.     [26]  MIAN M M, LIU G J, ZHOU H H. Preparation of N-doped biochar
            [9]   YU Y, LI N, LU X K, et al. Co/N co-doped carbonized wood sponge   from sewage sludge and melamine for peroxymonosulfate activation:
                 with 3D porous framework for efficient peroxymonosulfate activation:   N-functionality and catalytic  mechanisms[J]. Science of the Total
                 Performance  and internal mechanism[J]. Journal of  Hazardous   Environment, 2020, 744: 140862.
                 Materials, 2022, 421: 126735.                 [27]  CHEN Y D, BAI S W, LI R X, et al. Magnetic biochar catalysts from
            [10]  WANG Y S, SONG Y J, LI N, et al. Tunable active sites on biogas   anaerobic digested sludge: Production, application and environment
                 digestate derived biochar for sulfanilamide degradation by   impact[J]. Environment International, 2019, 126: 302-308.
                 peroxymonosulfate activation[J]. Journal of Hazardous  Materials,   [28]  AHMED M B, ZHOU J L, NGO  H H,  et al. Progress in  the
                 2022, 421: 126794.                                preparation  and  application of  modified biochar for improved
            [11]  SINGH S, KUMAR V, DHANJAL  D S,  et al. A sustainable   contaminant removal from water and wastewater[J]. Bioresource
   59   60   61   62   63   64   65   66   67   68   69