Page 64 - 《精细化工》2022年第1期
P. 64
·54· 精细化工 FINE CHEMICALS 第 39 卷
3 结论与展望 paradigm of sewage sludge biochar: Valorization, opportunities,
challenges and future prospects[J]. Journal of Cleaner Production,
2020, 269: 122259.
污泥生物炭基催化剂具有丰富的含氧基团、缺 [12] FAN H X (范皓翔), YUAN S J (院士杰), DAI X H (戴晓虎).
陷以及过渡金属等活性位点,因而在高级氧化体系 Research progress on sludge-derived biochar[J]. Water Purification
Technology (净水技术), 2019, 38(3): 32-37, 44.
表现出优良的催化潜力。此外,较大的比表面积和
[13] LEE J, KIM K H, KWON E E. Biochar as a catalyst[J]. Renewable
优良的孔隙结构使得污泥生物炭可作为合适的载体 and Sustainable Energy Reviews, 2017, 77: 70-79.
用于修饰改性,从而进一步增强其催化活性。本文 [14] HOSSAIN M K, STREZOV V, CHAN K Y, et al. Influence of
pyrolysis temperature on production and nutrient properties of wastewater
系统描述了污泥生物炭的制备方法并分别阐述了污 sludge biochar[J]. Journal of Environmental Management, 2011, 92:
泥生物炭基催化剂在不同氧化体系中的应用情况。 223-228.
[15] WEI S Y (韦思业). Influence of biomass feedstocks and pyrolysis
然而,污泥生物炭基材料的催化活性、稳定性以及
temperatures on physical and chemical properties of biochar[D].
可重用性仍需进一步的研究,以拓展其在实际水处 Beijing: University of Chinese Academy of Sciences (中国科学院大
理中的应用。此外,污泥生物炭基催化剂合成过程 学), 2017.
[16] MOHANTY P, NANDA S, PANT K K, et al. Evaluation of the
的能耗问题、过渡金属元素的浸出污染问题仍亟待 physiochemical development of biochars obtained from pyrolysis of
解决。未来污泥生物炭基催化剂的发展应首先聚焦 wheat straw, timothy grass and pinewood: Effects of heating rate[J].
Journal of Analytical and Applied Pyrolysis, 2013, 104: 485-493.
于增强污泥生物炭基催化剂的稳定性,防止造成二
[17] SUN C, CHEN T, HUANG Q X, et al. Activation of persulfate by
次污染;其次,进一步改善制备过程,降低能耗; CO 2-activated biochar for improved phenolic pollutant degradation:
同时,测试其在动态连续流反应器中的催化活性及 Performance and mechanism[J]. Chemical Engineering Journal,
2020, 380: 122519.
循环再生性,以提高工业化应用潜力;最后,通过 [18] LIANG H W, ZHUANG X D, BRÜLLER S, et al. Hierarchically
优化改性方法,同时耦合各种氧化体系,可显著增 porous carbons with optimized nitrogen doping as highly active
electrocatalysts for oxygen reduction[J]. Nature Communications,
强污泥生物炭基催化剂的水处理效能。 2014, 5: 4973.
[19] ZHANG H, XUE G, CHEN H, et al. Magnetic biochar catalyst
参考文献: derived from biological sludge and ferric sludge using hydrothermal
[1] LI F (李峰), GONG W B (龚文斌). Experimental study on coupling carbonization: Preparation, characterization and its circulation in
power generation technology of tower boiler mixed with 60% Fenton process for dyeing wastewater treatment[J]. Chemosphere,
moisture sludge[J]. Boiler Technology (锅炉技术), 2019, 50(5): 2018, 191: 64-71.
31-36. [20] LIBRA J A, RO K S, KAMMANN C, et al. Hydrothermal
[2] DAI X H (戴晓虎). Applications and perspectives of sludge treatment carbonization of biomass residuals: A comparative review of the
and disposal in China[J]. Science (科学), 2020, 72(6): 30-34, 4. chemistry, processes and applications of wet and dry pyrolysis[J].
[3] LIU H X (刘宏喜). Comprehensive utilization technology as a Biofuels, 2011, 2(1): 71-106.
resource by incineration treatment on sludge from printing and dyeing [21] PETERSON A A, VOGEL F, LACHANCE R P, et al.
wastewater[J]. Chemical Fiber & Textile Technology (化纤与纺织技 Thermochemical biofuel production in hydrothermal media: A review
术), 2012, 41(1): 17-21. of sub- and supercritical water technologies[J]. Energy & Environmental
[4] WANG J (汪佳). Study on treatment of refractory organic wastewater Science, 2008, 1: 32-65.
by persulfate activated by iron based sludge-derived biochar[D]. [22] JIAN X M, ZHUANG X Z, LI B S, et al. Comparison of
Wuhan: Huazhong University of Science and Technology (华中科技 characterization and adsorption of biochars produced from hydrothermal
大学), 2017. carbonization and pyrolysis[J]. Environmental Technology & Innovation,
[5] HUO Z Y, LEE D M, KIM Y J, et al. Solar-induced hybrid energy 2018, 10: 27-35.
harvesters for advanced oxidation water treatment[J]. iScience, 2021, [23] YUAN H R, LU T, HUANG H Y, et al. Influence of pyrolysis
24(7): 102808. temperature on physical and chemical properties of biochars made
[6] ZHU D D, ZHOU Q X. Action and mechanism of semiconductor from sewage sludge[J]. Journal of Analytical and Applied Pyrolysis,
photocatalysis on degradation of organic pollutants in water 2015, 112: 284-289.
treatment: A review[J]. Environmental Nanotechnology, Monitoring [24] LIU T T, LIU Z G, ZHENG Q F, et al. Effect of hydrothermal
& Management, 2019, 12: 100255. carbonization on migration and environmental risk of heavy metals in
[7] ZHANG M H, DONG H, ZHAO L, et al. A review on Fenton sewage sludge during pyrolysis[J]. Bioresource Technology, 2018,
process for organic wastewater treatment based on optimization 247: 282-290.
perspective[J]. Science of the Total Environment, 2019, 670: 110-121. [25] ZAKER A, CHEN Z, WANG X L, et al. Microwave-assisted
[8] LEE J S, GUNTEN U V, KIM J H. Persulfate-based advanced pyrolysis of sewage sludge: A review[J]. Fuel Processing Technology,
oxidation: Critical assessment of opportunities and roadblocks[J]. 2019, 187: 84-104.
Environmental Science & Technology, 2020, 54: 3064-3081. [26] MIAN M M, LIU G J, ZHOU H H. Preparation of N-doped biochar
[9] YU Y, LI N, LU X K, et al. Co/N co-doped carbonized wood sponge from sewage sludge and melamine for peroxymonosulfate activation:
with 3D porous framework for efficient peroxymonosulfate activation: N-functionality and catalytic mechanisms[J]. Science of the Total
Performance and internal mechanism[J]. Journal of Hazardous Environment, 2020, 744: 140862.
Materials, 2022, 421: 126735. [27] CHEN Y D, BAI S W, LI R X, et al. Magnetic biochar catalysts from
[10] WANG Y S, SONG Y J, LI N, et al. Tunable active sites on biogas anaerobic digested sludge: Production, application and environment
digestate derived biochar for sulfanilamide degradation by impact[J]. Environment International, 2019, 126: 302-308.
peroxymonosulfate activation[J]. Journal of Hazardous Materials, [28] AHMED M B, ZHOU J L, NGO H H, et al. Progress in the
2022, 421: 126794. preparation and application of modified biochar for improved
[11] SINGH S, KUMAR V, DHANJAL D S, et al. A sustainable contaminant removal from water and wastewater[J]. Bioresource