Page 18 - 《精细化工》2022年第10期
P. 18

·1952·                            精细化工   FINE CHEMICALS                                 第 39 卷

            [16]  YANG Y, FAN W, YUAN S J, et al. A 3D-printed integrated mxene-   composites[J]. ACS Applied Energy Materials, 2020, 3: 11350-11358.
                 based evaporator with a vertical array structure for salt-resistant solar   [34]  LI Z Y, MA X, CHEN D K, et al. Polyaniline-coated MOFs nanorod
                 desalination[J]. Journal of Materials Chemistry A, 2021, 9: 23968-   arrays for efficient evaporation-driven electricity generation and solar
                 23976.                                            steam desalination[J]. Advanced Science (Weinh), 2021, 8: 2004552.
            [17]  CAO N N, LU S T, YAO R, et al. A self-regenerating air-laid paper   [35]  JIANG M D, SHEN Q C, ZHANG J Y, et al. Bioinspired temperature
                 wrapped ASA 3D  cone-shaped janus  evaporator for efficient and   regulation in interfacial evaporation[J]. Advanced Functional Materials,
                 stable solar desalination[J]. Chemical Engineering Journal, 2020,   2020, 30: 1910481.
                 397: 125522.                                  [36]  LI M, HONG M, DARGUSCH M, et al. High-efficiency thermocells
            [18]  KONG  Y, GAO Y, SUN Y K,  et al. Manipulating a vertical   driven by thermo-electrochemical processes[J]. Trends in Chemistry,
                 temperature- gradient of Fe@Enteromorpha/graphene aerogel to   2021, 3: 561-574.
                 enhanced solar evaporation and sterilization[J]. Journal of Materials   [37]  SHEN Q  C,  NING Z Y, FU B W,  et al. An open
                 Chemistry A, 2022, 10: 3750-3759.                 thermo-electrochemical cell enabled  by  interfacial evaporation[J].
            [19]  CHEN J X, YIN J, LI B, et al. Janus evaporators with self-recovering   Journal of Materials Chemistry A, 2019, 7: 6514-6521.
                 hydrophobicity for salt-rejecting  interfacial solar desalination[J].   [38]  LI N, QIAO L F, HE J T, et al. Solar-driven interfacial evaporation
                 ACS Nano, 2020, 14: 17419-17427.                  and  self-powered water wave  detection  based  on an all-cellulose
            [20]  LEI W W, KHAN S, CHEN L, et al. Hierarchical structures hydrogel   monolithic  design[J].  Advanced Functional Materials, 2020, 31:
                 evaporator and superhydrophilic water collect device for efficient   2008681.
                 solar steam evaporation[J]. Nano Research, 2020, 14: 1135-1140.   [39]  LIU J, GUI J X, ZHOU W T, et al. Self-regulating and asymmetric
            [21]  LIU J F,  CHEN  X L, YANG H,  et al. Gel-emulsion templated   evaporator for efficient solar water-electricity generation[J]. Nano
                 polymeric  aerogels for solar-driven  interfacial evaporation and   Energy, 2021, 86: 106112.
                 electricity generation[J]. Materials Chemistry Frontiers, 2021, 5:   [40]  YANG P H, LIU K, CHEN Q, et al. Solar-driven simultaneous steam
                 1953-1961.                                        production and electricity generation from salinity[J]. Energy &
            [22]  PENG L H, GU X B, YANG H B, et al. Ultra-high evaporation rate   Environmental Science, 2017, 10: 1923-1927.
                 3D evaporator with vertical sheets based on full use of convection   [41]  LI J Y, ZHOU  X,  CHEN G B,  et al. Evaporation efficiency
                 flow[J]. Journal of Cleaner Production, 2022, 345: 131172.   monitoring device based on biomass photothermal  material for
            [23]  GAO C, ZHU J J, LI J C, et al. Honeycomb-structured fabric with   salt-resistant solar-driven interfacial evaporation[J]. Solar Energy
                 enhanced photothermal  management and site-specific salt   Materials and Solar Cells, 2021, 222: 110941.
                 crystallization enables sustainable solar steam generation[J]. Journal   [42]  YIP N, BROGIOLI D, HAMELERS H, et al. Salinity gradients for
                 of Colloid and Interface Science, 2022, 619: 322-330.   sustainable energy:Primer, progress, and prospects[J]. Environmental
            [24]  LUO  Y Q, SONG  F, WU J M,  et al. A nature-inspired suspended   Science & Technology, 2016, 50: 12072-12094.
                 solar evaporator for water desalination of high-salinity brines[J].   [43]  WANG H, XIE W K, YU B Y, et al. Simultaneous solar steam and
                 Chemical Engineering Journal, 2021, 421: 129824.   electricity generation from synergistic salinity-temperature gradient[J].
            [25]  FAN  X  F,  MU  H  C,  XU  Y  L,  et  al.  Silver  Advanced Energy Materials, 2021, 11: 2100481.
                 nanoparticles-polydopamine-wax gourd: An antimicrobial solar   [44]  HUANG  C H, HUANG J X, CHIAO Y,  et al. Tailoring  of a
                 evaporator with enhanced steam generation[J]. International Journal
                                                                   piezo-photo-  thermal solar evaporator for simultaneous  steam and
                 of Energy Research, 2022, 46: 8949-8961.
                                                                   power generation[J].  Advanced Functional Materials, 2021, 31:
            [26]  WU S L, QUAN  L N, HUANG  Y T,  et al. Suspended  membrane
                                                                   2010422.
                 evaporators integrating environmental and solar evaporation for oily
                                                               [45]  GUO Z  Z, WANG J, WANG Y F,  et al. Achieving  steam and
                 wastewater purification[J]. ACS  Applied Materials & Interfaces,
                                                                   electrical power from solar energy by MoS 2-based composites[J].
                 2021, 13: 39513-39522.
            [27]  DONG  X Y, LI  H, GAO  L F,  et al. Janus fibrous  mats based   Chemical Engineering Journal, 2022, 427: 131008.
                 suspended type evaporator for salt resistant solar desalination and salt   [46]  SUN H X (孙寒雪), CHAN W J (禅文君), WANG  Y J (王韵佳),
                 recovery[J]. Small, 2022, 18: e2107156.           et al. Construction and application of two-dimensional  membrane
            [28]  GAO M M, PEH C, PHAN H, et al. Solar absorber gel: Localized   materials based on CMPs[J]. Fine  Chemicals (精细化工), 2021,
                 macro-nano heat channeling for efficient plasmonic Au nanoflowers   38(12): 2433-2437.
                 photothermic vaporization and triboelectric generation[J]. Advanced   [47]  ZHU L L, DING T P, GAO M M, et al. Shape conformal and thermal
                 Energy Materials, 2018, 8: 1800711.               insulative organic solar absorber sponge for  photothermal water
            [29]  XU Y, GUO Z Z, WANG J,  et al. Harvesting solar energy by   evaporation and thermoelectric power generation[J].  Advanced
                 flowerlike carbon cloth nanocomposites for simultaneous generation   Energy Materials, 2019, 9: 1900250.
                 of clean water and electricity[J]. ACS Applied Materials &   [48]  JI  B  X, CHEN N,  SHAO C X,  et al. Intelligent  multiple-liquid
                 Interfaces, 2021, 13: 27129-27139.                evaporation  power  generation  platform  using  distinctive
            [30]  JIANG H L, AI L H, CHEN M, et al. Broadband nickel sulfide/nickel   jaboticaba-like carbon nanosphere@TiO 2  nanowires[J]. Journal of
                 foam-based solar evaporator for highly efficient water purification   Materials Chemistry A, 2019, 7: 6766-6772.
                 and electricity generation[J]. ACS Sustainable Chemistry &   [49]  XIE W C, TANG P, WU Q D, et al. Solar-driven desalination and
                 Engineering, 2020, 8: 10833-10841.                resource  recovery  of shale gas  wastewater by on-site  interfacial
            [31]  LI H R, WANG S M, YAN Z, et al. Harvesting conductive heat loss   evaporation[J]. Chemical Engineering Journal, 2022, 428: 132624.
                 of interfacial solar evaporator for thermoelectric power generation[J].   [50]  SHAN X L, ZHAO A Q, LIN Y W, et al. Low-cost, scalable, and
                 Applied Thermal Engineering, 2022, 208: 118279.   reusable photothermal layers for  highly efficient solar steam
            [32]  HAN X, WANG Z Y, SHEN M H, et al. A highly efficient organic   seneration and versatile energy conversion[J]. Advanced Sustainable
                 solar energy-absorbing material based on phthalocyanine derivative   Systems, 2020, 4: 1900153.
                 for integrated water evaporation and thermoelectric power generation   [51]  CAI C Y, WANG Y Q, WEI Z H, et al. Biomimetic 3D membranes
                 application[J]. Journal of Materials Chemistry A, 2021, 9: 24452-   with mxene heterostructures for superior solar steam generation,
                 24459.                                            water  treatment,  and electricity generation[J]. Solar  RRL, 2021, 5:
            [33]  XIAO C H, LIANG W D, HASI Q M, et al. Efficient solar steam   2100593.
                 generation  of carbon black incorporated hyper-cross-linked polymer         (下转第 1963 页)
   13   14   15   16   17   18   19   20   21   22   23