Page 18 - 《精细化工》2022年第10期
P. 18
·1952· 精细化工 FINE CHEMICALS 第 39 卷
[16] YANG Y, FAN W, YUAN S J, et al. A 3D-printed integrated mxene- composites[J]. ACS Applied Energy Materials, 2020, 3: 11350-11358.
based evaporator with a vertical array structure for salt-resistant solar [34] LI Z Y, MA X, CHEN D K, et al. Polyaniline-coated MOFs nanorod
desalination[J]. Journal of Materials Chemistry A, 2021, 9: 23968- arrays for efficient evaporation-driven electricity generation and solar
23976. steam desalination[J]. Advanced Science (Weinh), 2021, 8: 2004552.
[17] CAO N N, LU S T, YAO R, et al. A self-regenerating air-laid paper [35] JIANG M D, SHEN Q C, ZHANG J Y, et al. Bioinspired temperature
wrapped ASA 3D cone-shaped janus evaporator for efficient and regulation in interfacial evaporation[J]. Advanced Functional Materials,
stable solar desalination[J]. Chemical Engineering Journal, 2020, 2020, 30: 1910481.
397: 125522. [36] LI M, HONG M, DARGUSCH M, et al. High-efficiency thermocells
[18] KONG Y, GAO Y, SUN Y K, et al. Manipulating a vertical driven by thermo-electrochemical processes[J]. Trends in Chemistry,
temperature- gradient of Fe@Enteromorpha/graphene aerogel to 2021, 3: 561-574.
enhanced solar evaporation and sterilization[J]. Journal of Materials [37] SHEN Q C, NING Z Y, FU B W, et al. An open
Chemistry A, 2022, 10: 3750-3759. thermo-electrochemical cell enabled by interfacial evaporation[J].
[19] CHEN J X, YIN J, LI B, et al. Janus evaporators with self-recovering Journal of Materials Chemistry A, 2019, 7: 6514-6521.
hydrophobicity for salt-rejecting interfacial solar desalination[J]. [38] LI N, QIAO L F, HE J T, et al. Solar-driven interfacial evaporation
ACS Nano, 2020, 14: 17419-17427. and self-powered water wave detection based on an all-cellulose
[20] LEI W W, KHAN S, CHEN L, et al. Hierarchical structures hydrogel monolithic design[J]. Advanced Functional Materials, 2020, 31:
evaporator and superhydrophilic water collect device for efficient 2008681.
solar steam evaporation[J]. Nano Research, 2020, 14: 1135-1140. [39] LIU J, GUI J X, ZHOU W T, et al. Self-regulating and asymmetric
[21] LIU J F, CHEN X L, YANG H, et al. Gel-emulsion templated evaporator for efficient solar water-electricity generation[J]. Nano
polymeric aerogels for solar-driven interfacial evaporation and Energy, 2021, 86: 106112.
electricity generation[J]. Materials Chemistry Frontiers, 2021, 5: [40] YANG P H, LIU K, CHEN Q, et al. Solar-driven simultaneous steam
1953-1961. production and electricity generation from salinity[J]. Energy &
[22] PENG L H, GU X B, YANG H B, et al. Ultra-high evaporation rate Environmental Science, 2017, 10: 1923-1927.
3D evaporator with vertical sheets based on full use of convection [41] LI J Y, ZHOU X, CHEN G B, et al. Evaporation efficiency
flow[J]. Journal of Cleaner Production, 2022, 345: 131172. monitoring device based on biomass photothermal material for
[23] GAO C, ZHU J J, LI J C, et al. Honeycomb-structured fabric with salt-resistant solar-driven interfacial evaporation[J]. Solar Energy
enhanced photothermal management and site-specific salt Materials and Solar Cells, 2021, 222: 110941.
crystallization enables sustainable solar steam generation[J]. Journal [42] YIP N, BROGIOLI D, HAMELERS H, et al. Salinity gradients for
of Colloid and Interface Science, 2022, 619: 322-330. sustainable energy:Primer, progress, and prospects[J]. Environmental
[24] LUO Y Q, SONG F, WU J M, et al. A nature-inspired suspended Science & Technology, 2016, 50: 12072-12094.
solar evaporator for water desalination of high-salinity brines[J]. [43] WANG H, XIE W K, YU B Y, et al. Simultaneous solar steam and
Chemical Engineering Journal, 2021, 421: 129824. electricity generation from synergistic salinity-temperature gradient[J].
[25] FAN X F, MU H C, XU Y L, et al. Silver Advanced Energy Materials, 2021, 11: 2100481.
nanoparticles-polydopamine-wax gourd: An antimicrobial solar [44] HUANG C H, HUANG J X, CHIAO Y, et al. Tailoring of a
evaporator with enhanced steam generation[J]. International Journal
piezo-photo- thermal solar evaporator for simultaneous steam and
of Energy Research, 2022, 46: 8949-8961.
power generation[J]. Advanced Functional Materials, 2021, 31:
[26] WU S L, QUAN L N, HUANG Y T, et al. Suspended membrane
2010422.
evaporators integrating environmental and solar evaporation for oily
[45] GUO Z Z, WANG J, WANG Y F, et al. Achieving steam and
wastewater purification[J]. ACS Applied Materials & Interfaces,
electrical power from solar energy by MoS 2-based composites[J].
2021, 13: 39513-39522.
[27] DONG X Y, LI H, GAO L F, et al. Janus fibrous mats based Chemical Engineering Journal, 2022, 427: 131008.
suspended type evaporator for salt resistant solar desalination and salt [46] SUN H X (孙寒雪), CHAN W J (禅文君), WANG Y J (王韵佳),
recovery[J]. Small, 2022, 18: e2107156. et al. Construction and application of two-dimensional membrane
[28] GAO M M, PEH C, PHAN H, et al. Solar absorber gel: Localized materials based on CMPs[J]. Fine Chemicals (精细化工), 2021,
macro-nano heat channeling for efficient plasmonic Au nanoflowers 38(12): 2433-2437.
photothermic vaporization and triboelectric generation[J]. Advanced [47] ZHU L L, DING T P, GAO M M, et al. Shape conformal and thermal
Energy Materials, 2018, 8: 1800711. insulative organic solar absorber sponge for photothermal water
[29] XU Y, GUO Z Z, WANG J, et al. Harvesting solar energy by evaporation and thermoelectric power generation[J]. Advanced
flowerlike carbon cloth nanocomposites for simultaneous generation Energy Materials, 2019, 9: 1900250.
of clean water and electricity[J]. ACS Applied Materials & [48] JI B X, CHEN N, SHAO C X, et al. Intelligent multiple-liquid
Interfaces, 2021, 13: 27129-27139. evaporation power generation platform using distinctive
[30] JIANG H L, AI L H, CHEN M, et al. Broadband nickel sulfide/nickel jaboticaba-like carbon nanosphere@TiO 2 nanowires[J]. Journal of
foam-based solar evaporator for highly efficient water purification Materials Chemistry A, 2019, 7: 6766-6772.
and electricity generation[J]. ACS Sustainable Chemistry & [49] XIE W C, TANG P, WU Q D, et al. Solar-driven desalination and
Engineering, 2020, 8: 10833-10841. resource recovery of shale gas wastewater by on-site interfacial
[31] LI H R, WANG S M, YAN Z, et al. Harvesting conductive heat loss evaporation[J]. Chemical Engineering Journal, 2022, 428: 132624.
of interfacial solar evaporator for thermoelectric power generation[J]. [50] SHAN X L, ZHAO A Q, LIN Y W, et al. Low-cost, scalable, and
Applied Thermal Engineering, 2022, 208: 118279. reusable photothermal layers for highly efficient solar steam
[32] HAN X, WANG Z Y, SHEN M H, et al. A highly efficient organic seneration and versatile energy conversion[J]. Advanced Sustainable
solar energy-absorbing material based on phthalocyanine derivative Systems, 2020, 4: 1900153.
for integrated water evaporation and thermoelectric power generation [51] CAI C Y, WANG Y Q, WEI Z H, et al. Biomimetic 3D membranes
application[J]. Journal of Materials Chemistry A, 2021, 9: 24452- with mxene heterostructures for superior solar steam generation,
24459. water treatment, and electricity generation[J]. Solar RRL, 2021, 5:
[33] XIAO C H, LIANG W D, HASI Q M, et al. Efficient solar steam 2100593.
generation of carbon black incorporated hyper-cross-linked polymer (下转第 1963 页)