Page 92 - 《精细化工》2022年第10期
P. 92
·2026· 精细化工 FINE CHEMICALS 第 39 卷
2020. 2005135.
[4] YUAN B, WANG Y, CHEN G Q, et al. Nacre-like graphene oxide [26] LIU L L, ZHU D, CAO L L, et al. N-Heterocyclic carbene stabilized
+
paper bonded with boric acid for fire early-warning sensor[J]. Journal parent sulfenyl, selenenyl, and tellurenyl cations (XH , X=S, Se,
of Hazardous Materials, 2021, 403: 123645. Te)[J]. Dalton Transactions, 2017, 46(10): 3095-3099.
[5] CAO L T, LIU Q, REN J, et al. Electro-blown spun silk/graphene [27] SHI Y Q, SUN M N, LIU C, et al. Lightweight, amphipathic and
nanoionotronic skin for multifunctional fire protection and alarm[J]. fire-resistant rGO/MXene spherical beads for rapid elimination of
Advanced Materials, 2021, 33(38): 2102500. hazardous chemicals[J]. Journal of Hazardous Materials, 2022, 423:
[6] HE W T, SONG P A, YU B, et al. Flame retardant polymeric 127069.
nanocomposites through the combination of nanomaterials and [28] MA L H (马鸿梁), HAN W J (韩文佳), JING X (景鑫), et al.
conventional flame retardants[J]. Progress in Materials Science, Research progress of paper-based flexible conductive composite
2020, 114: 100687. materials[J]. Acta Materiae Compositae Sinica(复合材料学报),
[7] ZHANG X J, WANG G S, WEI Y Z, et al. Polymer-composite with 2021, 38(8): 2446-2458.
high dielectric constant and enhanced absorption properties based on [29] ZHANG L, HUANG Y B, DONG H R, et al. Flame-retardant shape
graphene-CuS nanocomposites and polyvinylidene fluoride[J]. memory polyurethane/MXene paper and the application for early fire
Journal of Materials Chemistry A, 2013, 1(39): 12115-12122. alarm sensor[J]. Composites Part B: Engineering, 2021, 223: 109149.
[8] COMPTON O C, KIM S, PIERRE C, et al. Crumpled graphene [30] MAO M, YU K X, CAO C F, et al. Facile and green fabrication of
nanosheets as highly effective barrier property enhancers[J]. Advanced flame-retardant Ti 3C 2T x MXene networks for ultrafast, reusable and
Materials, 2010, 22(42): 4759-4763. weather-resistant fire warning[J]. Chemical Engineering Journal,
[9] IDUMAH C I, EZEANI E O, EZIKA A C, et al. Recent advancements in 2022, 427: 131615.
flame retardancy of MXene polymer nanoarchitectures[J]. Safety in [31] JIAO E X, WU K, LIU Y C, et al. Ultrarobust MXene-based
Extreme Environments, 2021, 3(3): 253-273. laminated paper with excellent thermal conductivity and flame
[10] CAI W, WANG B B, WANG X, et al. Recent progress in two- retardancy[J]. Composites Part A: Applied Science and Manufacturing,
dimensional nanomaterials following graphene for improving fire 2021, 146: 106417.
safety of polymer (nano)composites[J]. Chinese Journal of Polymer [32] LI X, SÁNCHEZ DEL RÍO SAEZ J, AO X, et al. Highly-sensitive
Science, 2021, 39(8): 935-956. fire alarm system based on cellulose paper with low-temperature
[11] WEI Y, ZHANG P, SOOMRO R A, et al. Advances in the synthesis response and wireless signal conversion[J]. Chemical Engineering
of 2D MXenes[J]. Advanced Materials, 2021, 33(39): 2103148. Journal, 2022, 431: 134108.
[12] NAGUIB M, KURTOGLU M, PRESSER V, et al. Two-dimensional [33] LIN B, YUEN A C Y, LI A, et al. MXene/chitosan nanocoating for
nanocrystals produced by exfoliation of Ti 3AlC 2[J]. Advanced flexible polyurethane foam towards remarkable fire hazards
Materials, 2011, 23(37): 4248-4253.
reductions[J]. Journal of Hazardous Materials, 2020, 381: 120952.
[13] GUO R Y (郭茹月), BAO Y (鲍艳). Research progress on wearable [34] ZHANG S (张帅), ZHANG Y (张隐), PAN M Z (潘明珠). Research
piezoresistive strain sensors based on two-dimensional conductive progress of intelligent flame retardant coating with fire-warning
materials/flexible polymer composites[J]. Fine Chemicals (精细化 capabilities[J]. Acta Materiae Compositae Sinica (复合材料学报),
工), 2021, 38(4): 649-661. 2021, 38(1): 55-66.
[14] MASHTALIR O, NAGUIB M, MOCHALIN V N, et al. Intercalation [35] CHENG H G, LIU Q X, HAN S P, et al. Highly efficient
and delamination of layered carbides and carbonitrides[J]. Nature photothermal conversion of Ti 3C 2T x/ionic liquid gel pen ink for
Communications, 2013, 4(1): 1716.
[15] LI S N, YU Z R, GUO B F, et al. Environmentally stable, mechanically smoothly writing ultrasensitive, wide-range detecting, and flexible
thermal sensors[J]. ACS Applied Materials & Interfaces, 2020,
flexible, self-adhesive, and electrically conductive Ti 3C 2T x MXene
hydrogels for wide-temperature strain sensing[J]. Nano Energy, 2021, 12(33): 37637-37646.
90: 106502. [36] LAN C T, JIA H, QIU M H, et al. Ultrathin MXene/polymer coatings
[16] VENKATESHALU S, GRACE A N. MXenes—A new class of 2D with an alternating structure on fabrics for enhanced electromagnetic
layered materials: Synthesis, properties, applications as supercapacitor interference shielding and fire-resistant protective performances[J].
electrode and beyond[J]. Applied Materials Today, 2020, 18: 100509. ACS Applied Materials & Interfaces, 2021, 13(32): 38761-38772.
[17] LI L, SHI M K, LIU X Y, et al. Ultrathin titanium carbide (MXene) [37] HUANG Y B, JIANG S H, LIANG R C, et al. Thermal-triggered
films for high-temperature thermal camouflage[J]. Advanced Functional insulating fireproof layers: A novel fire-extinguishing MXene composites
Materials, 2021, 31(35): 2101381. coating[J]. Chemical Engineering Journal, 2020, 391: 123621.
[18] LU J Y, JIA P F, LIAO C, et al. Leaf vein-inspired engineering of [38] ZENG Q T, ZHAO Y A, LAI X J, et al. Skin-inspired multifunctional
MXene@SrSn(OH) 6 nanorods towards super-tough elastomer MXene/cellulose nanocoating for smart and efficient fire
nanocomposites with outstanding fire safety[J]. Composites Part B: protection[J]. Chemical Engineering Journal, 2022, 446: 136899.
Engineering, 2022, 228: 109425. [39] LEE S H, EOM W, SHIN H, et al. Room-temperature, highly durable
[19] MEHDI AGHAEI S, AASI A, PANCHAPAKESAN B. Experimental Ti 3C 2T x MXene/graphene hybrid fibers for NH 3 gas sensing[J]. ACS
and theoretical advances in MXene-based gas sensors[J]. ACS Applied Materials & Interfaces, 2020, 12(9): 10434-10442.
Omega, 2021, 6(4): 2450-2461. [40] WU M, HE M, HU Q K, et al. Ti 3C 2 MXene-based sensors with high
[20] XIN M, LI J A, MA Z, et al. MXenes and their applications in selectivity for NH 3 detection at room temperature[J]. ACS Sensors,
wearable sensors[J]. Frontiers in Chemistry, 2020, 8: 297. 2019, 4(10): 2763–2770.
[21] HO D H, CHOI Y Y, JO S B, et al. Sensing with MXenes: Progress [41] CHOI J, KIM Y, CHO S, et al. In situ formation of multiple schottky
and prospects[J]. Advanced Materials, 2021, 33(47): 2005846. barriers in a Ti 3C 2 MXene film and its application in highly sensitive
[22] CHEN F F, ZHU Y J, CHEN F, et al. Fire alarm wallpaper based on gas sensors[J]. Advanced Functional Materials, 2020, 30(40):
fire-resistant hydroxyapatite nanowire inorganic paper and graphene 2003998.
oxide thermosensitive sensor[J]. ACS Nano, 2018, 12(4): 3159-3171. [42] CHEN T D, YAN W H, WANG Y, et al. SnS 2/MXene derived TiO 2
[23] CHEN G Q, YUAN B H, WANG Y, et al. Nacre-biomimetic hybrid for ultra-fast room temperature NO 2 gas sensing[J]. Journal of
graphene oxide paper intercalated by phytic acid and its ultrafast Materials Chemistry C, 2021, 9(23): 7407-7416.
fire-alarm application[J]. Journal of Colloid and Interface Science, [43] JIAN Y Y, QU D Y, GUO L H, et al. The prior rules of designing
2020, 578: 412-421. Ti 3C 2T x MXene-based gas sensors[J]. Frontiers of Chemical Science
[24] LIU W Q, WANG X, SONG Y X, et al. Self-powered forest fire alarm and Engineering, 2021, 15(3): 505-517.
system based on impedance matching effect between triboelectric [44] ZHANG D Z, MI Q, WANG D Y, et al. MXene/Co 3O 4 composite
nanogenerator and thermosensitive sensor[J]. Nano Energy, 2020, 73: based formaldehyde sensor driven by ZnO/MXene nanowire arrays
104843. piezoelectric nanogenerator[J]. Sensors and Actuators B: Chemical,
[25] WEI Y, XIANG L J, OU H J, et al. MXene-based conductive 2021, 339: 129923.
organohydrogels with long-term environmental stability and
multifunctionality[J]. Advanced Functional Materials, 2020, 30(48): (下转第 2043 页)