Page 92 - 《精细化工》2022年第10期
P. 92

·2026·                            精细化工   FINE CHEMICALS                                 第 39 卷

                 2020.                                             2005135.
            [4]   YUAN B, WANG Y, CHEN G Q, et al. Nacre-like graphene oxide   [26]  LIU L L, ZHU D, CAO L L, et al. N-Heterocyclic carbene stabilized
                                                                                                     +
                 paper bonded with boric acid for fire early-warning sensor[J]. Journal   parent sulfenyl, selenenyl, and tellurenyl cations (XH , X=S,  Se,
                 of Hazardous Materials, 2021, 403: 123645.        Te)[J]. Dalton Transactions, 2017, 46(10): 3095-3099.
            [5]   CAO  L T, LIU Q,  REN J,  et al. Electro-blown spun silk/graphene   [27]  SHI Y Q, SUN M N, LIU C,  et al.  Lightweight, amphipathic and
                 nanoionotronic skin for multifunctional fire protection and alarm[J].   fire-resistant  rGO/MXene spherical beads for rapid elimination of
                 Advanced Materials, 2021, 33(38): 2102500.        hazardous chemicals[J]. Journal of Hazardous Materials, 2022, 423:
            [6]   HE W T, SONG  P A, YU B,  et al. Flame retardant polymeric   127069.
                 nanocomposites through the combination of nanomaterials and   [28]  MA L H  (马鸿梁), HAN  W J (韩文佳), JING X (景鑫),  et al.
                 conventional flame retardants[J]. Progress in Materials Science,   Research progress of paper-based flexible conductive  composite
                 2020, 114: 100687.                                materials[J]. Acta  Materiae Compositae Sinica(复合材料学报),
            [7]   ZHANG X J, WANG G S, WEI Y Z, et al. Polymer-composite with   2021, 38(8): 2446-2458.
                 high dielectric constant and enhanced absorption properties based on   [29]  ZHANG L, HUANG Y B, DONG H R, et al. Flame-retardant shape
                 graphene-CuS  nanocomposites and polyvinylidene fluoride[J].   memory polyurethane/MXene paper and the application for early fire
                 Journal of Materials Chemistry A, 2013, 1(39): 12115-12122.   alarm sensor[J]. Composites Part B: Engineering, 2021, 223: 109149.
            [8]   COMPTON O C,  KIM S, PIERRE C, et al. Crumpled graphene   [30]  MAO M, YU K X, CAO C F, et al. Facile and green fabrication of
                 nanosheets as  highly effective barrier property enhancers[J].  Advanced   flame-retardant Ti 3C 2T x MXene networks for ultrafast, reusable and
                 Materials, 2010, 22(42): 4759-4763.               weather-resistant fire warning[J]. Chemical Engineering Journal,
            [9]   IDUMAH C I, EZEANI E O, EZIKA A C, et al. Recent advancements in   2022, 427: 131615.
                 flame retardancy of MXene polymer nanoarchitectures[J]. Safety in   [31]  JIAO E X, WU  K, LIU Y C,  et al. Ultrarobust MXene-based
                 Extreme Environments, 2021, 3(3): 253-273.        laminated paper with excellent thermal conductivity and flame
            [10]  CAI W, WANG  B  B, WANG X,  et al. Recent progress in two-   retardancy[J]. Composites Part A: Applied Science and Manufacturing,
                 dimensional nanomaterials following graphene for improving fire   2021, 146: 106417.
                 safety of polymer (nano)composites[J]. Chinese Journal of Polymer   [32]  LI X, SÁNCHEZ DEL RÍO SAEZ J, AO X, et al. Highly-sensitive
                 Science, 2021, 39(8): 935-956.                    fire alarm system  based on cellulose paper with low-temperature
            [11]  WEI Y, ZHANG P, SOOMRO R A, et al. Advances in the synthesis   response and wireless signal conversion[J]. Chemical Engineering
                 of 2D MXenes[J]. Advanced Materials, 2021, 33(39): 2103148.   Journal, 2022, 431: 134108.
            [12]  NAGUIB M, KURTOGLU M, PRESSER V, et al. Two-dimensional   [33]  LIN B, YUEN A C Y, LI A, et al. MXene/chitosan nanocoating for
                 nanocrystals produced by  exfoliation of Ti 3AlC 2[J]. Advanced   flexible polyurethane foam towards remarkable fire hazards
                 Materials, 2011, 23(37): 4248-4253.
                                                                   reductions[J]. Journal of Hazardous Materials, 2020, 381: 120952.
            [13]  GUO R Y (郭茹月), BAO Y (鲍艳). Research progress on wearable   [34]  ZHANG S (张帅), ZHANG Y (张隐), PAN M Z (潘明珠). Research
                 piezoresistive strain sensors based on two-dimensional conductive   progress  of  intelligent flame retardant coating with fire-warning
                 materials/flexible polymer  composites[J]. Fine Chemicals (精细化  capabilities[J]. Acta Materiae Compositae Sinica (复合材料学报),
                 工), 2021, 38(4): 649-661.                         2021, 38(1): 55-66.
            [14]  MASHTALIR O, NAGUIB M, MOCHALIN V N, et al. Intercalation   [35]  CHENG H G, LIU Q X, HAN S P,  et al. Highly efficient
                 and delamination of layered carbides and carbonitrides[J]. Nature   photothermal conversion of Ti 3C 2T x/ionic liquid  gel pen ink for
                 Communications, 2013, 4(1): 1716.
            [15]  LI S N, YU Z R, GUO B F, et al. Environmentally stable, mechanically   smoothly writing ultrasensitive, wide-range detecting, and flexible
                                                                   thermal sensors[J]. ACS Applied Materials & Interfaces, 2020,
                 flexible, self-adhesive, and electrically conductive  Ti 3C 2T x MXene
                 hydrogels for wide-temperature strain sensing[J]. Nano Energy, 2021,   12(33): 37637-37646.
                 90: 106502.                                   [36]  LAN C T, JIA H, QIU M H, et al. Ultrathin MXene/polymer coatings
            [16]  VENKATESHALU S, GRACE A N. MXenes—A new class of 2D   with an alternating structure on fabrics for enhanced electromagnetic
                 layered materials: Synthesis, properties, applications as supercapacitor   interference shielding and fire-resistant protective performances[J].
                 electrode and beyond[J]. Applied Materials Today, 2020, 18: 100509.   ACS Applied Materials & Interfaces, 2021, 13(32): 38761-38772.
            [17]  LI L, SHI M K, LIU X Y, et al. Ultrathin titanium carbide (MXene)   [37]  HUANG Y  B, JIANG S H,  LIANG  R C,  et al. Thermal-triggered
                 films for high-temperature thermal camouflage[J]. Advanced Functional   insulating fireproof layers: A novel fire-extinguishing MXene composites
                 Materials, 2021, 31(35): 2101381.                 coating[J]. Chemical Engineering Journal, 2020, 391: 123621.
            [18]  LU J Y, JIA P F, LIAO C, et al. Leaf vein-inspired engineering of   [38]  ZENG Q T, ZHAO Y A, LAI X J, et al. Skin-inspired multifunctional
                 MXene@SrSn(OH) 6 nanorods towards  super-tough  elastomer   MXene/cellulose nanocoating  for smart and efficient fire
                 nanocomposites with outstanding fire safety[J]. Composites Part B:   protection[J]. Chemical Engineering Journal, 2022, 446: 136899.
                 Engineering, 2022, 228: 109425.               [39]  LEE S H, EOM W, SHIN H, et al. Room-temperature, highly durable
            [19]  MEHDI AGHAEI S, AASI A, PANCHAPAKESAN B. Experimental   Ti 3C 2T x MXene/graphene hybrid fibers for NH 3 gas sensing[J]. ACS
                 and theoretical advances in MXene-based gas sensors[J]. ACS   Applied Materials & Interfaces, 2020, 12(9): 10434-10442.
                 Omega, 2021, 6(4): 2450-2461.                 [40]  WU M, HE M, HU Q K, et al. Ti 3C 2 MXene-based sensors with high
            [20]  XIN M, LI J A,  MA Z,  et al. MXenes and their applications in   selectivity for NH 3 detection at room temperature[J]. ACS Sensors,
                 wearable sensors[J]. Frontiers in Chemistry, 2020, 8: 297.   2019, 4(10): 2763–2770.
            [21]  HO D H, CHOI Y Y, JO S B, et al. Sensing with MXenes: Progress   [41]  CHOI J, KIM Y, CHO S, et al. In situ formation of multiple schottky
                 and prospects[J]. Advanced Materials, 2021, 33(47): 2005846.   barriers in a Ti 3C 2 MXene film and its application in highly sensitive
            [22]  CHEN F F, ZHU Y J, CHEN F, et al. Fire alarm wallpaper based on   gas sensors[J]. Advanced Functional Materials, 2020, 30(40):
                 fire-resistant hydroxyapatite nanowire inorganic paper and graphene   2003998.
                 oxide thermosensitive sensor[J]. ACS Nano, 2018, 12(4): 3159-3171.   [42]  CHEN T D, YAN W H, WANG Y, et al. SnS 2/MXene derived TiO 2
            [23]  CHEN G Q, YUAN B  H, WANG Y,  et al. Nacre-biomimetic   hybrid for ultra-fast room temperature NO 2 gas sensing[J]. Journal of
                 graphene  oxide paper intercalated by phytic acid and  its ultrafast   Materials Chemistry C, 2021, 9(23): 7407-7416.
                 fire-alarm application[J]. Journal of Colloid and Interface Science,   [43]  JIAN Y Y, QU D Y, GUO L H, et al. The prior rules of designing
                 2020, 578: 412-421.                               Ti 3C 2T x MXene-based gas sensors[J]. Frontiers of Chemical Science
            [24]  LIU W Q, WANG X, SONG Y X, et al. Self-powered forest fire alarm   and Engineering, 2021, 15(3): 505-517.
                 system based on impedance  matching effect between triboelectric   [44]  ZHANG D  Z, MI Q, WANG D Y,  et al. MXene/Co 3O 4 composite
                 nanogenerator and thermosensitive sensor[J]. Nano Energy, 2020, 73:   based formaldehyde sensor driven by ZnO/MXene nanowire arrays
                 104843.                                           piezoelectric nanogenerator[J]. Sensors and Actuators B: Chemical,
            [25]  WEI Y, XIANG  L J,  OU  H J,  et al. MXene-based conductive   2021, 339: 129923.
                 organohydrogels  with long-term environmental stability and
                 multifunctionality[J]. Advanced Functional Materials, 2020, 30(48):         (下转第 2043 页)
   87   88   89   90   91   92   93   94   95   96   97