Page 64 - 《精细化工》2022年第11期
P. 64

·2214·                            精细化工   FINE CHEMICALS                                 第 39 卷

                 probe: Sensitive detection of water content in commercial products   [53]  SUN H, TANG X X, MIAO B X, et al. A new AIE and TICT active
                 and rapid detection of hypochlorite with a large Stokes shift[J]. Dyes   tetraphenylethene-based thiazole compound: Synthesis, structure,
                 and Pigments, 2019, 162: 160-167.                 photophysical properties and application  for water detection in
            [50]  SACHDEVA T,  MILTON M D. Fluorescent dyes for moisture   organic solvents[J]. Sensors and Actuators B: Chemical, 2018, 267:
                 detection in organic solvents: Push-pull based phenothiazine   448-456.
                 aldehydes with large stokes shifts[J]. Journal of Photochemistry and   [54]  SUN H, TANG X X, ZHANG R, et al. Tetraphenylethene-substituted
                 Photobiology A: Chemistry, 2020, 402: 112804.     benzothiadiazoles: AIE and TICT properties, tunable intramolecular
            [51]  HAN  M K,  CHEN M, EBENDORFF-HEIDEPRIEM  H,  et al. An   conjugation and application in detecting trace water in organic
                 optical fibre sensor for remotely detecting water traces in organic   solvents[J]. Dyes and Pigments, 2020, 174: 108051.
                 solvents[J]. RSC Advances, 2016, 6(85): 82186-82190.   [55]  MISE Y, IMATO K, OGI T, et al. Fluorescence sensors for detection
            [52]  OOYAMA  Y, NOMURA  R, ENOKI T,  et al. Development of a   of water based on tetraphenylethene-anthracene possessing both
                 dual-fluorescence emission sensor based on photo-induced electron   solvatofluorochromic properties and aggregation-induced emission
                 transfer and aggregation-induced emission enhancement for detection   (AIE) characteristics[J]. New Journal of Chemistry, 2021, 45(9):
                 of water[J]. ChemistrySelect, 2017, 2(26): 7765-7770.   4164-4173.




            (上接第 2183 页)                                           8(25): 12526-12537.
            [87]  CAO W  T,  CHEN F F, ZHU Y J,  et al. Binary strengthening and   [94]  HUANG Y  B, JIANG S H,  LIANG  R C,  et al. Thermal-triggered
                 toughening of MXene/cellulose nanofiber composite paper with   insulating  fireproof layers:  A novel fire-extinguishing MXene
                 nacre-inspired structure and superior electromagnetic interference   composites coating[J]. Chemical Engineering Journal, 2020, 391:
                 shielding properties[J]. ACS Nano, 2018, 12: 4583-4593.     123621.
            [88]  FAN X Q,  YANG  Y, SHI X L, et al.  A MXene-based hierarchical   [95]  WANG B L, LAI X J, LI H Q,  et al. Multifunctional MXene/
                 design enabling highly efficient and stable solar-water desalination   chitosan-coated cotton fabric for intelligent fire protection[J]. ACS
                 with good salt resistance[J]. Advanced Functional Materials, 2020,   Applied Materials & Interfaces, 2021, 13(19): 23020-23029.
                 30(52): 2007110.                              [96]  CHENG H R, PAN Y M, WANG  X,  et al. Ni flower/MXene-
            [89]  CHEN Y, YANG J, ZHU L,  et al. An integrated highly hydrated   melamine foam derived 3D magnetic/conductive networks for
                 cellulose network with a synergistic photothermal effect for efficient   ultra-efficient microwave absorption and infrared stealth[J].
                 solar-driven water evaporation and  salt resistance[J]. Journal  of   Nano-Micro Letters, 2022, 14: 63.
                 Materials Chemistry A, 2021, 9(27): 15482-15492.     [97]  LI L, SHI M K, LIU X Y, et al. Ultrathin titanium carbide (MXene)
            [90]  LI R Y, ZHANG L B, SHI L, et al. MXene Ti 3C 2: An effective 2D   films for high-temperature thermal camouflage[J].  Advanced
                 light-to-heat conversion material[J].  ACS Nano, 2017, 11(4):   Functional Materials, 2021, 31(35): 2101381.
                 3752-3759.                                    [98]  LIU B J (刘冰洁), LIU Y (刘艳), ZHOU G W (周国伟). Research
            [91]  FAN X Q,  LIU L,  JIN X,  et al. MXene Ti 3C 2T x for phase change   progress on prepartion of MXene composite and their application in
                 composite with superior photothermal storage capability[J]. Journal   electrochenistry[J]. New Chemical Materials (化工新型材料), 2020,
                 of Materials Chemistry A, 2019, 7(23): 14319-14327.     48(10): 1-5.
            [92]  PAN S S, YIN J H, YU L D, et al. 2D MXene-integrated 3D-printing   [99]  GONG  K L, ZHOU K Q, QIAN X  D,  et al. MXene  as emerging
                 scaffolds for augmented osteosarcoma phototherapy and accelerated   nanofillers  for high-performance polymer composites: A review[J].
                 tissue reconstruction[J]. Advanced Science, 2020, 7(2): 1901511.     Composites,Part B: Engineering, 2021, 217: 10886.
            [93]  LIU X Y, JIN X  X,  LI L,  et al. Air-permeable,  multifunctional,   [100]  HOU J H (侯建华), YANG M  Y (杨木易), SUN A (孙昂),  et al.
                 dual-energy-driven  MXene-decorated  polymeric  textile-based  Application of MXenes and their composite materials in the field
                 wearable heater with exceptional electrothermal and photothermal   of environment[J]. Fine  Chemicals  (精细化工), 2021, 38(12):
                 conversion performance[J]. Journal of Materials Chemistry A, 2020,   2422-2431.




            (上接第 2202 页)                                       [60]  WANG Y C, LIU Z R, TAN C, et al. High catalytic activity of CuY
                                                                   catalysts prepared by high temperature anhydrous interaction for the
            [56]  YAN L F (阎立飞), ZHANG G Q (张国强),    LI Y J (李艳娇), et al.   oxidative carbonylation of methanol[J]. Royal SOC  Chemistry
                 Influence of mesoporous modulation on CuY catalyst for oxidative   Advances, 2020, 10(6): 3293-3300.
                 carbonylation of methanol[J]. Chinese Journal of Inorganic Chemistry   [61]  ZHOU H X, WANG B W, WANG S P, et al. CuY zeolite catalyzed
                 (无机化学学报), 2017, 33(8): 1435-1442.                 oxidative carbonylation of methanol to dimethyl carbonate:
            [57]  LIANG J H (梁家豪), ZHANG G Q (张国强), GAO Y (高源), et al.   Comparative investigation of reduction method[J]. Chemistry
                 Effect of mesoporous construction on catalytic performance of CuY   Letters, 2018, 47(8): 1075-1078.
                 methanol oxidative carbonylation[J]. CIESC Journal (化工学报),   [62]  ZHANG G Q (张国强), LI Z (李忠), YI J (尹娇), et al. High-activity
                 2021, 72(9): 4685-4697.                           chloride-free CuI/Y catalyst, preparation method and application of
            [58]  HUANG S Y, WANG Y, WANG Z Z, et al. Cu-doped zeolites for   high-activity chloride-free CuI/Y catalyst in  synthesis  of dimethyl
                 catalytic oxidative carbonylation:  The role of Bronsted acids[J].   carbonate: CN107519913A[P]. 2017-12-29.
                 Applied Catalysis A: General, 2012, 417: 236-242.   [63]  LI M  Y (李梦云),  FU T J (付廷俊), WANG Y  C  (王玉春),  et al.
                                                                            +
            [59]  ZHOU H X, WANG S P, WANG B W, et al. Oxycarbonylation of   Influence of H  contents  of support on CuY catalyst for catalytic
                 methanol over modified CuY: Enhanced activity by improving   performances of oxidative carbonylation of methanol[J]. Chinese
                 accessibility of active sites[J]. Chinese Chemical Letters, 2019,   Journal  of Inorganic Chemistry (无机化学学报), 2016, 32(11):
                 30(3): 775-778.                                   1951-1958.
   59   60   61   62   63   64   65   66   67   68   69