Page 64 - 《精细化工》2022年第11期
P. 64
·2214· 精细化工 FINE CHEMICALS 第 39 卷
probe: Sensitive detection of water content in commercial products [53] SUN H, TANG X X, MIAO B X, et al. A new AIE and TICT active
and rapid detection of hypochlorite with a large Stokes shift[J]. Dyes tetraphenylethene-based thiazole compound: Synthesis, structure,
and Pigments, 2019, 162: 160-167. photophysical properties and application for water detection in
[50] SACHDEVA T, MILTON M D. Fluorescent dyes for moisture organic solvents[J]. Sensors and Actuators B: Chemical, 2018, 267:
detection in organic solvents: Push-pull based phenothiazine 448-456.
aldehydes with large stokes shifts[J]. Journal of Photochemistry and [54] SUN H, TANG X X, ZHANG R, et al. Tetraphenylethene-substituted
Photobiology A: Chemistry, 2020, 402: 112804. benzothiadiazoles: AIE and TICT properties, tunable intramolecular
[51] HAN M K, CHEN M, EBENDORFF-HEIDEPRIEM H, et al. An conjugation and application in detecting trace water in organic
optical fibre sensor for remotely detecting water traces in organic solvents[J]. Dyes and Pigments, 2020, 174: 108051.
solvents[J]. RSC Advances, 2016, 6(85): 82186-82190. [55] MISE Y, IMATO K, OGI T, et al. Fluorescence sensors for detection
[52] OOYAMA Y, NOMURA R, ENOKI T, et al. Development of a of water based on tetraphenylethene-anthracene possessing both
dual-fluorescence emission sensor based on photo-induced electron solvatofluorochromic properties and aggregation-induced emission
transfer and aggregation-induced emission enhancement for detection (AIE) characteristics[J]. New Journal of Chemistry, 2021, 45(9):
of water[J]. ChemistrySelect, 2017, 2(26): 7765-7770. 4164-4173.
(上接第 2183 页) 8(25): 12526-12537.
[87] CAO W T, CHEN F F, ZHU Y J, et al. Binary strengthening and [94] HUANG Y B, JIANG S H, LIANG R C, et al. Thermal-triggered
toughening of MXene/cellulose nanofiber composite paper with insulating fireproof layers: A novel fire-extinguishing MXene
nacre-inspired structure and superior electromagnetic interference composites coating[J]. Chemical Engineering Journal, 2020, 391:
shielding properties[J]. ACS Nano, 2018, 12: 4583-4593. 123621.
[88] FAN X Q, YANG Y, SHI X L, et al. A MXene-based hierarchical [95] WANG B L, LAI X J, LI H Q, et al. Multifunctional MXene/
design enabling highly efficient and stable solar-water desalination chitosan-coated cotton fabric for intelligent fire protection[J]. ACS
with good salt resistance[J]. Advanced Functional Materials, 2020, Applied Materials & Interfaces, 2021, 13(19): 23020-23029.
30(52): 2007110. [96] CHENG H R, PAN Y M, WANG X, et al. Ni flower/MXene-
[89] CHEN Y, YANG J, ZHU L, et al. An integrated highly hydrated melamine foam derived 3D magnetic/conductive networks for
cellulose network with a synergistic photothermal effect for efficient ultra-efficient microwave absorption and infrared stealth[J].
solar-driven water evaporation and salt resistance[J]. Journal of Nano-Micro Letters, 2022, 14: 63.
Materials Chemistry A, 2021, 9(27): 15482-15492. [97] LI L, SHI M K, LIU X Y, et al. Ultrathin titanium carbide (MXene)
[90] LI R Y, ZHANG L B, SHI L, et al. MXene Ti 3C 2: An effective 2D films for high-temperature thermal camouflage[J]. Advanced
light-to-heat conversion material[J]. ACS Nano, 2017, 11(4): Functional Materials, 2021, 31(35): 2101381.
3752-3759. [98] LIU B J (刘冰洁), LIU Y (刘艳), ZHOU G W (周国伟). Research
[91] FAN X Q, LIU L, JIN X, et al. MXene Ti 3C 2T x for phase change progress on prepartion of MXene composite and their application in
composite with superior photothermal storage capability[J]. Journal electrochenistry[J]. New Chemical Materials (化工新型材料), 2020,
of Materials Chemistry A, 2019, 7(23): 14319-14327. 48(10): 1-5.
[92] PAN S S, YIN J H, YU L D, et al. 2D MXene-integrated 3D-printing [99] GONG K L, ZHOU K Q, QIAN X D, et al. MXene as emerging
scaffolds for augmented osteosarcoma phototherapy and accelerated nanofillers for high-performance polymer composites: A review[J].
tissue reconstruction[J]. Advanced Science, 2020, 7(2): 1901511. Composites,Part B: Engineering, 2021, 217: 10886.
[93] LIU X Y, JIN X X, LI L, et al. Air-permeable, multifunctional, [100] HOU J H (侯建华), YANG M Y (杨木易), SUN A (孙昂), et al.
dual-energy-driven MXene-decorated polymeric textile-based Application of MXenes and their composite materials in the field
wearable heater with exceptional electrothermal and photothermal of environment[J]. Fine Chemicals (精细化工), 2021, 38(12):
conversion performance[J]. Journal of Materials Chemistry A, 2020, 2422-2431.
(上接第 2202 页) [60] WANG Y C, LIU Z R, TAN C, et al. High catalytic activity of CuY
catalysts prepared by high temperature anhydrous interaction for the
[56] YAN L F (阎立飞), ZHANG G Q (张国强), LI Y J (李艳娇), et al. oxidative carbonylation of methanol[J]. Royal SOC Chemistry
Influence of mesoporous modulation on CuY catalyst for oxidative Advances, 2020, 10(6): 3293-3300.
carbonylation of methanol[J]. Chinese Journal of Inorganic Chemistry [61] ZHOU H X, WANG B W, WANG S P, et al. CuY zeolite catalyzed
(无机化学学报), 2017, 33(8): 1435-1442. oxidative carbonylation of methanol to dimethyl carbonate:
[57] LIANG J H (梁家豪), ZHANG G Q (张国强), GAO Y (高源), et al. Comparative investigation of reduction method[J]. Chemistry
Effect of mesoporous construction on catalytic performance of CuY Letters, 2018, 47(8): 1075-1078.
methanol oxidative carbonylation[J]. CIESC Journal (化工学报), [62] ZHANG G Q (张国强), LI Z (李忠), YI J (尹娇), et al. High-activity
2021, 72(9): 4685-4697. chloride-free CuI/Y catalyst, preparation method and application of
[58] HUANG S Y, WANG Y, WANG Z Z, et al. Cu-doped zeolites for high-activity chloride-free CuI/Y catalyst in synthesis of dimethyl
catalytic oxidative carbonylation: The role of Bronsted acids[J]. carbonate: CN107519913A[P]. 2017-12-29.
Applied Catalysis A: General, 2012, 417: 236-242. [63] LI M Y (李梦云), FU T J (付廷俊), WANG Y C (王玉春), et al.
+
[59] ZHOU H X, WANG S P, WANG B W, et al. Oxycarbonylation of Influence of H contents of support on CuY catalyst for catalytic
methanol over modified CuY: Enhanced activity by improving performances of oxidative carbonylation of methanol[J]. Chinese
accessibility of active sites[J]. Chinese Chemical Letters, 2019, Journal of Inorganic Chemistry (无机化学学报), 2016, 32(11):
30(3): 775-778. 1951-1958.