Page 98 - 《精细化工》2022年第11期
P. 98
·2248· 精细化工 FINE CHEMICALS 第 39 卷
前景的高耐用性导电棉织物电极(Ag/M-CF)。 [12] PENHAKER M, POLOMIK J, KUBICEK J, et al. Biopotential
(2)对 Ag/M-CF 应用过程中可能影响使用效 conducting polymer electrodes design and realization for ECG
measurement[C]. Proceedings of the 10th International Joint
果的因素进行了研究。利用 SEM 揭示了织物电极的 Conference on Biomedical Engineering Systems and Technologies,
银层在使用中的剥落等破坏过程,Ag/M-CF 在洗涤、 Vol 1: Biodevices, 2017: 134-141.
[13] NIGUSSE A B, MENGISTIE D A, MALENGIER B, et al. Wearable
弯曲、氧化、拉伸后仍有良好的导电性,能够满足
smart textiles for long-term electrocardiography monitoring-A
实际应用的需求。 review[J]. Sensors, 2021, 21(12): 4174.
(3)洗涤前后的 Ag/M-CF 都具有良好的抗菌 [14] ANKHILI A, TAO X Y, COCHRANE C, et al. Washable and reliable
textile electrodes embedded into underwear fabric for electrocardiography
性,接触大肠杆菌后能抑制细菌的生长以及破坏细 (ECG) monitoring[J]. Materials, 2018, 11(2): 256.
菌细胞膜。 [15] QIN H M, LI J R, HE B H, et al. Novel wearable electrodes based on
(4)Ag/M-CF 用于心电电极,成功监测到不 conductive chitosan fabrics and their application in smart
garments[J]. Materials, 2018, 11(3): 370.
同运动速度下的心率,其表现出良好的洗涤稳定性, [16] HE D D, QIN H M, QIAN L Y, et al. Conductive chitosan nonwoven
洗涤 200 次后,测得心率与洗涤前几乎相同。 fabrics by electroless plating with excellent laundering durability for
wearable electronics[J]. Journal of Natural Fibers, 2022: 1-11.
参考文献: [17] WANG L, PAN Y, HE D, et al. Conductive polyester fabrics with
high washability as electrocardiogram textile electrodes[J]. ACS
[1] ZHANG J W, ZHANG Y, LI Y Y, et al. Fabrication of a conductive Applied Polymer Materials, 2022, 4(2): 1440-1447.
poly(3,4-ethylenedioxythiophene)-coated polyester nonwoven fabric [18] WANG L, HE D D, LI J R, et al. Conductive cotton fabrics with
and its application in flexible piezoresistive pressure sensors[J]. ACS
Applied Electronic Materials, 2021, 3(7): 3177-3184. ultrahigh washability by electroless silver plating after silane
[2] HUANG H T (黄海涛). Preparation of conductive cotton fabrics by modification[J]. Cellulose, 2021, 28(9): 5881-5893.
padding reduction of graphene oxide[J]. Fine Chemicals (精细化工), [19] DU P B, GUO Z G, LI Y H, et al. One-step anchored polymers via
2020, 37(10): 2132-2137. phenolamine bionic design on textile-based heater for application in
[3] GUO B L, MA P X. Conducting polymers for tissue engineering[J]. personal heat management[J]. Journal of Applied Polymer Science,
Biomacromolecules, 2018, 19(6): 1764-1782. 2022, 139(17): e52021.
[4] LIU S (刘帅), SU Q C (苏青春), ZHANG D (张丹), et al. [20] WU Z Q, YANG F, YANG J L, et al. Durable and flexible PET-based
Preparation of palladium-free activated nickel-plated conductive bending sensor obtained by immobilizing carbon nanotubes via surface
cotton fabric and its conductive properties[J]. Fine Chemicals (精细 micro-dissolution for body motion monitoring[J]. Macromolecular
化工), 2021, 38(2): 329-334. Materials and Engineering, 2022, 307(1): 2100502.
[5] BHANDARI V, JOSE S, BADANAYAK P, et al. Antimicrobialfinishing [21] CHEN F C, LIU H J, XU M T, et al. Flexible cotton fabric with
of metals, metal oxides, and metal composites on textiles: A systematic stable conductive coatings for piezoresistive sensors[J]. Cellulose,
review[J]. Industrial & Engineering Chemistry Research, 2022, 61(1): 2021, 28(15): 10025-10038.
86-101. [22] KISANNAGAR R R, SINGH M, GUPTA D. Multifunctional, wash
[6] TSEGHAI G B, MALENGIER B, FANTE K A, et al. Integration of durable and re-usable conductive textiles for wearable
conductive materials with textile structures-An overview[J]. Sensors, electro/physiological monitoring[J]. Macromolecular Materials and
2020, 20(23): 6910. Engineering, 2021, 306(7): 2000804.
[7] MAO Y, WANG W, YU D. Conductive, antibacterial, and [23] JIANG L H, HONG H, YAN X, et al. Facile thermoplastic
electromagnetic shielding silver-plated cotton fabrics activated by polyurethane-based multi-walled carbon nanotube ink for fabrication
dopamine[J]. Journal of Applied Polymer Science, 2018, 135(42): of screen-printed fabric electrodes of wearable e-textiles with high
46766. adhesion and resistance stability under large deformation[J]. Textile
[8] CHEN L M, LU M Y, YANG H S, et al. Textile-based capacitive Research Journal, 2021, 91(21/22): 2487-2499.
sensor for physical rehabilitation via surface topological [24] ZHOU Y F, LI W Y, LI L L, et al. Light weight and highly
modification[J]. ACS Nano, 2020, 14(7): 8191-8201. conductive silver nanoparticles functionalized meta-aramid
[9] JIA L C, SUN W J, XU L, et al. Facile construction of a nonwoven fabric for enhanced electromagnetic interference
superhydrophobic surface on a textile with excellent electrical shielding[J]. Journal of Materials Science, 2021, 56(10): 6499-6513.
conductivity and stretchability[J]. Industrial & Engineering [25] NIU B, YANG S, HUA T, et al. Facile fabrication of highly
Chemistry Research, 2020, 59(16): 7546-7553. conductive, waterproof, and washable e-textiles for wearable
[10] LEE J W, YUN K S. ECG monitoring garment using conductive applications[J]. Nano Research, 2021, 14(4): 1043-1052.
carbon paste for reduced motion artifacts[J]. Polymers, 2017, 9(9): [26] SHEN W N (沈文宁), FENG L J (冯拉俊), LEI A L (雷阿利), et al.
439. Preparation of ultra silver peroxide powder and characterization[J].
[11] RAMASAM Y S, BALAN A. Wearable sensors for ECG Rare Metal Materials and Engineering (稀有金属材料与工程),
measurement: A review[J]. Sensor Review, 2018, 38(4): 412-419. 2011, 40(S2): 31-35.