Page 98 - 《精细化工》2022年第11期
P. 98

·2248·                            精细化工   FINE CHEMICALS                                 第 39 卷

            前景的高耐用性导电棉织物电极(Ag/M-CF)。                           [12]  PENHAKER M, POLOMIK J, KUBICEK J,  et al. Biopotential
                 (2)对 Ag/M-CF 应用过程中可能影响使用效                         conducting polymer electrodes design and  realization  for ECG
                                                                   measurement[C].  Proceedings  of the 10th International Joint
            果的因素进行了研究。利用 SEM 揭示了织物电极的                              Conference on Biomedical Engineering Systems and Technologies,
            银层在使用中的剥落等破坏过程,Ag/M-CF 在洗涤、                            Vol 1: Biodevices, 2017: 134-141.
                                                               [13]  NIGUSSE A B, MENGISTIE D A, MALENGIER B, et al. Wearable
            弯曲、氧化、拉伸后仍有良好的导电性,能够满足
                                                                   smart textiles for long-term electrocardiography monitoring-A
            实际应用的需求。                                               review[J]. Sensors, 2021, 21(12): 4174.
                 (3)洗涤前后的 Ag/M-CF 都具有良好的抗菌                     [14]  ANKHILI A, TAO X Y, COCHRANE C, et al. Washable and reliable
                                                                   textile electrodes embedded into underwear fabric for electrocardiography
            性,接触大肠杆菌后能抑制细菌的生长以及破坏细                                 (ECG) monitoring[J]. Materials, 2018, 11(2): 256.
            菌细胞膜。                                              [15]  QIN H M, LI J R, HE B H, et al. Novel wearable electrodes based on
                 (4)Ag/M-CF 用于心电电极,成功监测到不                          conductive chitosan fabrics and their application in smart
                                                                   garments[J]. Materials, 2018, 11(3): 370.
            同运动速度下的心率,其表现出良好的洗涤稳定性,                            [16]  HE D D, QIN H M, QIAN L Y, et al. Conductive chitosan nonwoven
            洗涤 200 次后,测得心率与洗涤前几乎相同。                                fabrics by electroless plating with excellent laundering durability for
                                                                   wearable electronics[J]. Journal of Natural Fibers, 2022: 1-11.
            参考文献:                                              [17]  WANG L, PAN  Y, HE D,  et al. Conductive polyester fabrics with
                                                                   high washability as electrocardiogram textile electrodes[J]. ACS
            [1]   ZHANG J W, ZHANG Y, LI Y Y, et al. Fabrication of a conductive   Applied Polymer Materials, 2022, 4(2): 1440-1447.
                 poly(3,4-ethylenedioxythiophene)-coated polyester nonwoven fabric   [18]  WANG L, HE  D  D, LI J R,  et al. Conductive cotton fabrics with
                 and its application in flexible piezoresistive pressure sensors[J]. ACS
                 Applied Electronic Materials, 2021, 3(7): 3177-3184.   ultrahigh washability by electroless silver plating after silane
            [2]   HUANG H T (黄海涛). Preparation of conductive cotton fabrics by   modification[J]. Cellulose, 2021, 28(9): 5881-5893.
                 padding reduction of graphene oxide[J]. Fine Chemicals (精细化工),   [19]  DU P B, GUO Z G, LI Y H, et al. One-step anchored polymers via
                 2020, 37(10): 2132-2137.                          phenolamine bionic design on textile-based heater for application in
            [3]   GUO B L, MA P X. Conducting polymers for tissue engineering[J].   personal heat management[J]. Journal of Applied Polymer Science,
                 Biomacromolecules, 2018, 19(6): 1764-1782.        2022, 139(17): e52021.
            [4]   LIU S (刘帅), SU Q C (苏青春), ZHANG D (张丹),  et al.   [20]  WU Z Q, YANG F, YANG J L, et al. Durable and flexible PET-based
                 Preparation of  palladium-free activated nickel-plated conductive   bending sensor obtained by immobilizing carbon nanotubes via surface
                 cotton fabric and its conductive properties[J]. Fine Chemicals (精细  micro-dissolution for body  motion  monitoring[J]. Macromolecular
                 化工), 2021, 38(2): 329-334.                        Materials and Engineering, 2022, 307(1): 2100502.
            [5]   BHANDARI V, JOSE S, BADANAYAK P, et al. Antimicrobialfinishing   [21]  CHEN F C,  LIU  H J, XU M T,  et al. Flexible cotton  fabric with
                 of metals, metal oxides, and metal composites on textiles: A systematic   stable conductive coatings for piezoresistive sensors[J]. Cellulose,
                 review[J]. Industrial & Engineering Chemistry Research,  2022,  61(1):   2021, 28(15): 10025-10038.
                 86-101.                                       [22]  KISANNAGAR R R, SINGH M, GUPTA D. Multifunctional, wash
            [6]   TSEGHAI G B, MALENGIER B, FANTE K A, et al. Integration of   durable  and  re-usable  conductive  textiles  for  wearable
                 conductive materials with textile structures-An overview[J]. Sensors,   electro/physiological monitoring[J]. Macromolecular Materials and
                 2020, 20(23): 6910.                               Engineering, 2021, 306(7): 2000804.
            [7]   MAO  Y, WANG W,  YU  D. Conductive, antibacterial, and   [23]  JIANG L H, HONG H,  YAN X,  et al. Facile thermoplastic
                 electromagnetic shielding silver-plated cotton fabrics activated by   polyurethane-based multi-walled carbon nanotube ink for fabrication
                 dopamine[J]. Journal of Applied Polymer Science, 2018, 135(42):   of screen-printed  fabric electrodes  of  wearable e-textiles with high
                 46766.                                            adhesion and resistance stability under large deformation[J]. Textile
            [8]   CHEN L M,  LU  M Y,  YANG H S,  et al. Textile-based capacitive   Research Journal, 2021, 91(21/22): 2487-2499.
                 sensor for physical rehabilitation  via  surface topological   [24]  ZHOU Y F, LI  W Y, LI  L  L,  et al. Light weight and highly
                 modification[J]. ACS Nano, 2020, 14(7): 8191-8201.   conductive  silver  nanoparticles  functionalized  meta-aramid
            [9]   JIA L C, SUN  W J, XU L,  et al. Facile construction of a   nonwoven  fabric for enhanced  electromagnetic interference
                 superhydrophobic  surface on a textile with excellent  electrical   shielding[J]. Journal of Materials Science, 2021, 56(10): 6499-6513.
                 conductivity and stretchability[J]. Industrial & Engineering   [25]  NIU B, YANG S, HUA  T,  et al.  Facile fabrication of highly
                 Chemistry Research, 2020, 59(16): 7546-7553.      conductive, waterproof, and washable e-textiles  for wearable
            [10]  LEE  J W,  YUN K  S. ECG monitoring garment using conductive   applications[J]. Nano Research, 2021, 14(4): 1043-1052.
                 carbon paste for reduced motion artifacts[J]. Polymers, 2017, 9(9):   [26]  SHEN W N (沈文宁), FENG L J (冯拉俊), LEI A L (雷阿利), et al.
                 439.                                              Preparation of ultra silver peroxide powder and  characterization[J].
            [11]  RAMASAM Y S, BALAN A. Wearable sensors  for ECG   Rare Metal Materials and Engineering (稀有金属材料与工程),
                 measurement: A review[J]. Sensor Review, 2018, 38(4): 412-419.   2011, 40(S2): 31-35.
   93   94   95   96   97   98   99   100   101   102   103